論文の概要: EchoWorld: Learning Motion-Aware World Models for Echocardiography Probe Guidance
- arxiv url: http://arxiv.org/abs/2504.13065v1
- Date: Thu, 17 Apr 2025 16:19:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:36:40.119838
- Title: EchoWorld: Learning Motion-Aware World Models for Echocardiography Probe Guidance
- Title(参考訳): EchoWorld: 心エコー検査のためのモーションアウェアな世界モデル
- Authors: Yang Yue, Yulin Wang, Haojun Jiang, Pan Liu, Shiji Song, Gao Huang,
- Abstract要約: 本稿では,プローブ誘導のためのモーションアウェアな世界モデリングフレームワークであるEchoWorldを紹介する。
解剖学的な知識と運動によって引き起こされる視覚力学を符号化する。
200以上の定期的なスキャンから100万枚以上の超音波画像で訓練されている。
- 参考スコア(独自算出の注目度): 79.66329903007869
- License:
- Abstract: Echocardiography is crucial for cardiovascular disease detection but relies heavily on experienced sonographers. Echocardiography probe guidance systems, which provide real-time movement instructions for acquiring standard plane images, offer a promising solution for AI-assisted or fully autonomous scanning. However, developing effective machine learning models for this task remains challenging, as they must grasp heart anatomy and the intricate interplay between probe motion and visual signals. To address this, we present EchoWorld, a motion-aware world modeling framework for probe guidance that encodes anatomical knowledge and motion-induced visual dynamics, while effectively leveraging past visual-motion sequences to enhance guidance precision. EchoWorld employs a pre-training strategy inspired by world modeling principles, where the model predicts masked anatomical regions and simulates the visual outcomes of probe adjustments. Built upon this pre-trained model, we introduce a motion-aware attention mechanism in the fine-tuning stage that effectively integrates historical visual-motion data, enabling precise and adaptive probe guidance. Trained on more than one million ultrasound images from over 200 routine scans, EchoWorld effectively captures key echocardiographic knowledge, as validated by qualitative analysis. Moreover, our method significantly reduces guidance errors compared to existing visual backbones and guidance frameworks, excelling in both single-frame and sequential evaluation protocols. Code is available at https://github.com/LeapLabTHU/EchoWorld.
- Abstract(参考訳): 心エコー法は心血管疾患の検出には重要であるが、経験豊富なソノグラフィーに大きく依存している。
標準的な平面画像を取得するためのリアルタイム移動指示を提供するエコー心電図プローブ誘導システムは、AI支援または完全自律走査のための有望なソリューションを提供する。
しかし、このタスクに有効な機械学習モデルを開発するには、心臓解剖学とプローブ運動と視覚信号の複雑な相互作用を把握しなければならないため、依然として困難である。
そこで本稿では,従来の視覚動作シーケンスを効果的に活用して指導精度を向上させるとともに,解剖学的知識と運動誘発視覚力学を符号化する,プローブガイダンスのための動き認識世界モデリングフレームワークであるEchoWorldを提案する。
モデルでは、マスクされた解剖学的領域を予測し、プローブ調整の視覚的結果をシミュレートする。
この事前学習モデルに基づいて、歴史的視覚運動データを効果的に統合し、高精度かつ適応的なプローブガイダンスを可能にする、微調整段階における動き認識の注意機構を導入する。
200以上の定期的なスキャンから100万以上の超音波画像でトレーニングされたEchoWorldは、質的な分析によって検証された、重要な心エコー図の知識を効果的に捉えている。
さらに,既存の視覚的バックボーンやガイダンスフレームワークと比較して,ガイダンスの誤りを著しく低減し,単一フレームおよびシーケンシャルな評価プロトコルに優れていた。
コードはhttps://github.com/LeapLabTHU/EchoWorldで入手できる。
関連論文リスト
- EchoFM: Foundation Model for Generalizable Echocardiogram Analysis [22.585990526913246]
心エコービデオの表現と解析に特化して設計された基礎モデルであるEchoFMを紹介する。
EchoFMでは,空間的および時間的変動の両方をキャプチャする自己教師型学習フレームワークを提案する。
我々は,290,000本以上の心エコービデオと最大2000万フレームの画像からなる広範囲なデータセット上で,我々のモデルを事前訓練した。
論文 参考訳(メタデータ) (2024-10-30T19:32:02Z) - EchoApex: A General-Purpose Vision Foundation Model for Echocardiography [9.202542805578432]
本稿では,初の汎用視覚基礎モデルであるEchoApexを紹介し,様々な臨床応用について紹介する。
自己教師付き学習を活用して、EchoApexは11の臨床センターから2000万以上のエコー画像に事前訓練されている。
最先端のタスク固有のモデルと比較すると、EchoApexは統一されたイメージエンコーディングアーキテクチャでパフォーマンスが改善されている。
論文 参考訳(メタデータ) (2024-10-14T21:10:56Z) - Automatic Cardiac Pathology Recognition in Echocardiography Images Using Higher Order Dynamic Mode Decomposition and a Vision Transformer for Small Datasets [2.0286377328378737]
心臓病は、人間の機能不全の主な原因だ。WHOによると、心臓病のために毎年約1800万人が死亡している。
本研究では,新しい深層学習フレームワークに基づく自動心臓病理診断システムを提案する。
論文 参考訳(メタデータ) (2024-04-30T14:16:45Z) - Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
リアルタイムガイドワイヤ分割と追跡のための2段階のディープラーニングフレームワークを提案する。
第1段階では、ヨロフ5検出器が元のX線画像と合成画像を使って訓練され、ターゲットのガイドワイヤのバウンディングボックスを出力する。
第2段階では、検出された各バウンディングボックスにガイドワイヤを分割するために、新規で効率的なネットワークが提案されている。
論文 参考訳(メタデータ) (2024-04-12T20:39:19Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - Intelligent Robotic Sonographer: Mutual Information-based Disentangled
Reward Learning from Few Demonstrations [42.731081399649916]
この研究は、インテリジェントなロボットソノグラフィーによって、自律的に標的解剖を発見」し、専門家から学ぶことによって、米国のプローブを関連する2D平面にナビゲートすることを提案する。
専門家による基礎となる高レベルの生理的知識は神経報酬関数によって推測される。
提案した高度なフレームワークは、生き生きとしたヒトの頸動脈データだけでなく、さまざまな幻影や見えない幻影を強く扱うことができる。
論文 参考訳(メタデータ) (2023-07-07T16:30:50Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - A Temporal Learning Approach to Inpainting Endoscopic Specularities and
Its effect on Image Correspondence [13.25903945009516]
本稿では,時間的生成的対位ネットワーク(GAN)を用いて,隠蔽解剖学を特異性の下で描くことを提案する。
これは、胃内視鏡(Hyper-Kvasir)の生検データを用いて、完全に教師なしの方法で達成される。
また,3次元再構成とカメラモーション推定の基盤となるコンピュータビジョンタスクにおける本手法の有効性を評価する。
論文 参考訳(メタデータ) (2022-03-31T13:14:00Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
本稿では,マルチモーダルグラフネットワーク(MRG-Net)の新たなオンラインアプローチを提案し,視覚情報とキネマティクス情報を動的に統合する。
本手法の有効性は, JIGSAWSデータセット上での最先端の成果で実証された。
論文 参考訳(メタデータ) (2020-11-03T11:00:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。