It's All Connected: A Journey Through Test-Time Memorization, Attentional Bias, Retention, and Online Optimization
- URL: http://arxiv.org/abs/2504.13173v1
- Date: Thu, 17 Apr 2025 17:59:33 GMT
- Title: It's All Connected: A Journey Through Test-Time Memorization, Attentional Bias, Retention, and Online Optimization
- Authors: Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, Vahab Mirrokni,
- Abstract summary: We reconceptualize neural architectures as associative memory modules that learn a mapping of keys and values using an internal objective, referred to attentional bias.<n>We present three novel sequence models-Moneta, Yaad, and Memora-that go beyond the power of existing linear RNNs while maintaining a fast parallelizable training process.<n>For example, certain instances of Miras achieve exceptional performance in special tasks such as language modeling, commonsense reasoning, and recall intensive tasks, even outperforming Transformers and other modern linear recurrent models.
- Score: 26.3595298111209
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing efficient and effective architectural backbones has been in the core of research efforts to enhance the capability of foundation models. Inspired by the human cognitive phenomenon of attentional bias-the natural tendency to prioritize certain events or stimuli-we reconceptualize neural architectures, including Transformers, Titans, and modern linear recurrent neural networks as associative memory modules that learn a mapping of keys and values using an internal objective, referred to as attentional bias. Surprisingly, we observed that most existing sequence models leverage either (1) dot-product similarity, or (2) L2 regression objectives as their attentional bias. Going beyond these objectives, we present a set of alternative attentional bias configurations along with their effective approximations to stabilize their training procedure. We then reinterpret forgetting mechanisms in modern deep learning architectures as a form of retention regularization, providing a novel set of forget gates for sequence models. Building upon these insights, we present Miras, a general framework to design deep learning architectures based on four choices of: (i) associative memory architecture, (ii) attentional bias objective, (iii) retention gate, and (iv) memory learning algorithm. We present three novel sequence models-Moneta, Yaad, and Memora-that go beyond the power of existing linear RNNs while maintaining a fast parallelizable training process. Our experiments show different design choices in Miras yield models with varying strengths. For example, certain instances of Miras achieve exceptional performance in special tasks such as language modeling, commonsense reasoning, and recall intensive tasks, even outperforming Transformers and other modern linear recurrent models.
Related papers
- UniSTD: Towards Unified Spatio-Temporal Learning across Diverse Disciplines [64.84631333071728]
We introduce bfUnistage, a unified Transformer-based framework fortemporal modeling.
Our work demonstrates that a task-specific vision-text can build a generalizable model fortemporal learning.
We also introduce a temporal module to incorporate temporal dynamics explicitly.
arXiv Detail & Related papers (2025-03-26T17:33:23Z) - Test-time regression: a unifying framework for designing sequence models with associative memory [24.915262407519876]
We show that effective sequence models must be able to perform associative recall.<n>Our key insight is that memorizing input tokens through an associative memory is equivalent to performing regression at test-time.<n>We show numerous recent architectures -- including linear attention models, their gated variants, state-space models, online learners, and softmax attention -- emerge naturally as specific approaches to test-time regression.
arXiv Detail & Related papers (2025-01-21T18:32:31Z) - Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Deconstructing Recurrence, Attention, and Gating: Investigating the transferability of Transformers and Gated Recurrent Neural Networks in forecasting of dynamical systems [0.0]
We decompose the key architectural components of the most powerful neural architectures, namely gating and recurrence in RNNs, and attention mechanisms in transformers.
A key finding is that neural gating and attention improves the accuracy of all standard RNNs in most tasks, while the addition of a notion of recurrence in transformers is detrimental.
arXiv Detail & Related papers (2024-10-03T16:41:51Z) - Bidirectional Awareness Induction in Autoregressive Seq2Seq Models [47.82947878753809]
Bidirectional Awareness Induction (BAI) is a training method that leverages a subset of elements in the network, the Pivots, to perform bidirectional learning without breaking the autoregressive constraints.
In particular, we observed an increase of up to 2.4 CIDEr in Image-Captioning, 4.96 BLEU in Neural Machine Translation, and 1.16 ROUGE in Text Summarization compared to the respective baselines.
arXiv Detail & Related papers (2024-08-25T23:46:35Z) - Longhorn: State Space Models are Amortized Online Learners [51.10124201221601]
State-space models (SSMs) offer linear decoding efficiency while maintaining parallelism during training.
In this work, we explore SSM design through the lens of online learning, conceptualizing SSMs as meta-modules for specific online learning problems.
We introduce a novel deep SSM architecture, Longhorn, whose update resembles the closed-form solution for solving the online associative recall problem.
arXiv Detail & Related papers (2024-07-19T11:12:08Z) - Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling [4.190836962132713]
This paper introduces Orchid, a novel architecture designed to address the quadratic complexity of traditional attention mechanisms.
At the core of this architecture lies a new data-dependent global convolution layer, which contextually adapts its conditioned kernel on input sequence.
We evaluate the proposed model across multiple domains, including language modeling and image classification, to highlight its performance and generality.
arXiv Detail & Related papers (2024-02-28T17:36:45Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Robust Graph Representation Learning via Predictive Coding [46.22695915912123]
Predictive coding is a message-passing framework initially developed to model information processing in the brain.
In this work, we build models that rely on the message-passing rule of predictive coding.
We show that the proposed models are comparable to standard ones in terms of performance in both inductive and transductive tasks.
arXiv Detail & Related papers (2022-12-09T03:58:22Z) - Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline
Reinforcement Learning [114.36124979578896]
We design a dynamic mechanism using offline reinforcement learning algorithms.
Our algorithm is based on the pessimism principle and only requires a mild assumption on the coverage of the offline data set.
arXiv Detail & Related papers (2022-05-05T05:44:26Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
We propose a novel dynamic substitute training attack method to encourage substitute model to learn better and faster from the target model.
We introduce a task-driven graph-based structure information learning constrain to improve the quality of generated training data.
arXiv Detail & Related papers (2022-04-03T02:29:11Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.