In between myth and reality: AI for math -- a case study in category theory
- URL: http://arxiv.org/abs/2504.13360v1
- Date: Thu, 17 Apr 2025 21:58:30 GMT
- Title: In between myth and reality: AI for math -- a case study in category theory
- Authors: Răzvan Diaconescu,
- Abstract summary: We discuss an experiment we have made in the direction of mathematical research, with two of the most prominent contemporary AI systems.<n>One of the objective of this experiment is to get an understanding of how AI systems can assist mathematical research.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, there is an increasing interest in understanding the performance of AI systems in solving math problems. A multitude of tests have been performed, with mixed conclusions. In this paper we discuss an experiment we have made in the direction of mathematical research, with two of the most prominent contemporary AI systems. One of the objective of this experiment is to get an understanding of how AI systems can assist mathematical research. Another objective is to support the AI systems developers by formulating suggestions for directions of improvement.
Related papers
- The Mathematics of Artificial Intelligence [23.03787751696068]
This overview article highlights the critical role of mathematics in artificial intelligence (AI)<n>It emphasizes that mathematics provides tools to better understand and enhance AI systems.<n> Conversely, AI raises new problems and drives the development of new mathematics at the intersection of various fields.
arXiv Detail & Related papers (2025-01-15T15:00:23Z) - Mathematics and Machine Creativity: A Survey on Bridging Mathematics with AI [14.825293189738849]
This paper presents a comprehensive overview on the applications of artificial intelligence (AI) in mathematical research.<n>Recent developments in AI, particularly in reinforcement learning (RL) and large language models (LLMs), have demonstrated the potential for AI to contribute back to mathematics.<n>This survey aims to establish a bridge between AI and mathematics, providing insights into the mutual benefits and fostering deeper interdisciplinary understanding.
arXiv Detail & Related papers (2024-12-21T08:58:36Z) - Formal Mathematical Reasoning: A New Frontier in AI [60.26950681543385]
We advocate for formal mathematical reasoning and argue that it is indispensable for advancing AI4Math to the next level.<n>We summarize existing progress, discuss open challenges, and envision critical milestones to measure future success.
arXiv Detail & Related papers (2024-12-20T17:19:24Z) - Machine learning and information theory concepts towards an AI
Mathematician [77.63761356203105]
The current state-of-the-art in artificial intelligence is impressive, especially in terms of mastery of language, but not so much in terms of mathematical reasoning.
This essay builds on the idea that current deep learning mostly succeeds at system 1 abilities.
It takes an information-theoretical posture to ask questions about what constitutes an interesting mathematical statement.
arXiv Detail & Related papers (2024-03-07T15:12:06Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - Mathematics, word problems, common sense, and artificial intelligence [0.0]
We discuss the capacities and limitations of current artificial intelligence (AI) technology to solve word problems that combine elementary knowledge with commonsense reasoning.
We review three approaches that have been developed, using AI natural language technology.
We argue that it is not clear whether these kinds of limitations will be important in developing AI technology for pure mathematical research.
arXiv Detail & Related papers (2023-01-23T21:21:39Z) - The Role of Heuristics and Biases During Complex Choices with an AI
Teammate [0.0]
We argue that classic experimental methods are insufficient for studying complex choices made with AI helpers.
We show that framing and anchoring effects impact how people work with an AI helper and are predictive of choice outcomes.
arXiv Detail & Related papers (2023-01-14T20:06:43Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
The MineRL BASALT competition aims to spur forward research on this important class of techniques.
We design a suite of four tasks in Minecraft for which we expect it will be hard to write down hardcoded reward functions.
We provide a dataset of human demonstrations on each of the four tasks, as well as an imitation learning baseline.
arXiv Detail & Related papers (2021-07-05T12:18:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.