Multi-scale Cross-restoration Framework for Electrocardiogram Anomaly
Detection
- URL: http://arxiv.org/abs/2308.01639v1
- Date: Thu, 3 Aug 2023 09:16:57 GMT
- Title: Multi-scale Cross-restoration Framework for Electrocardiogram Anomaly
Detection
- Authors: Aofan Jiang, Chaoqin Huang, Qing Cao, Shuang Wu, Zi Zeng, Kang Chen,
Ya Zhang, and Yanfeng Wang
- Abstract summary: Electrocardiogram (ECG) is a widely used diagnostic tool for detecting heart conditions.
Rare cardiac diseases may be underdiagnosed using traditional ECG analysis, considering that no training dataset can exhaust all possible cardiac disorders.
This paper proposes using anomaly detection to identify any unhealthy status, with normal ECGs solely for training.
- Score: 33.48389041651675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electrocardiogram (ECG) is a widely used diagnostic tool for detecting heart
conditions. Rare cardiac diseases may be underdiagnosed using traditional ECG
analysis, considering that no training dataset can exhaust all possible cardiac
disorders. This paper proposes using anomaly detection to identify any
unhealthy status, with normal ECGs solely for training. However, detecting
anomalies in ECG can be challenging due to significant inter-individual
differences and anomalies present in both global rhythm and local morphology.
To address this challenge, this paper introduces a novel multi-scale
cross-restoration framework for ECG anomaly detection and localization that
considers both local and global ECG characteristics. The proposed framework
employs a two-branch autoencoder to facilitate multi-scale feature learning
through a masking and restoration process, with one branch focusing on global
features from the entire ECG and the other on local features from
heartbeat-level details, mimicking the diagnostic process of cardiologists.
Anomalies are identified by their high restoration errors. To evaluate the
performance on a large number of individuals, this paper introduces a new
challenging benchmark with signal point-level ground truths annotated by
experienced cardiologists. The proposed method demonstrates state-of-the-art
performance on this benchmark and two other well-known ECG datasets. The
benchmark dataset and source code are available at:
\url{https://github.com/MediaBrain-SJTU/ECGAD}
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - ECGformer: Leveraging transformer for ECG heartbeat arrhythmia
classification [0.0]
An arrhythmia, also known as a dysrhythmia, refers to an irregular heartbeat.
Deep learning has demonstrated exceptional capabilities in tackling various medical challenges.
We develop the ECGformer model for the classification of various arrhythmias present in electrocardiogram data.
arXiv Detail & Related papers (2024-01-06T06:14:48Z) - TSRNet: Simple Framework for Real-time ECG Anomaly Detection with
Multimodal Time and Spectrogram Restoration Network [9.770923451320938]
We propose an approach that leverages anomaly detection to identify unhealthy conditions using solely normal ECG data for training.
We introduce a specialized network called the Multimodal Time and Spectrogram Restoration Network (TSRNet) designed specifically for detecting anomalies in ECG signals.
arXiv Detail & Related papers (2023-12-15T20:27:38Z) - Unlocking the Diagnostic Potential of ECG through Knowledge Transfer
from Cardiac MRI [6.257859765229826]
We propose the first self-supervised contrastive approach that transfers domain-specific information from CMR images to ECG embeddings.
Our approach combines multimodal contrastive learning with masked data modeling to enable holistic cardiac screening solely from ECG data.
arXiv Detail & Related papers (2023-08-09T10:05:11Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
We propose a two-level hierarchical deep learning framework with Generative Adversarial Network (GAN) for automatic diagnosis of ECG signals.
The first-level model is composed of a Memory-Augmented Deep auto-Encoder with GAN, which aims to differentiate abnormal signals from normal ECGs for anomaly detection.
The second-level learning aims at robust multi-class classification for different arrhythmias identification.
arXiv Detail & Related papers (2022-10-19T12:29:05Z) - Two-stream Network for ECG Signal Classification [3.222802562733787]
This paper explores an effective algorithm for automatic classifications of multi-classes of heartbeat types based on ECG.
A two-stream architecture is used in this paper and presents an enhanced version of ECG recognition based on this.
Results on the MIT-BIH Arrhythmia Database demonstrate that the proposed algorithm performs an accuracy of 99.38%.
arXiv Detail & Related papers (2022-10-05T08:14:51Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
We propose a novel factored attention and embedding model (termed FAE-Gen) for the unstructured-view topic-related ultrasound report generation.
The proposed FAE-Gen mainly consists of two modules, i.e., view-guided factored attention and topic-oriented factored embedding, which capture the homogeneous and heterogeneous morphological characteristic across different views.
arXiv Detail & Related papers (2022-03-12T15:24:03Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.