論文の概要: BeetleVerse: A study on taxonomic classification of ground beetles
- arxiv url: http://arxiv.org/abs/2504.13393v1
- Date: Fri, 18 Apr 2025 01:06:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 19:48:10.895439
- Title: BeetleVerse: A study on taxonomic classification of ground beetles
- Title(参考訳): BeetleVerse:カブトムシの分類学的分類に関する研究
- Authors: S M Rayeed, Alyson East, Samuel Stevens, Sydne Record, Charles V Stewart,
- Abstract要約: 地上の甲虫は、非常に敏感で特異な生物学的指標であり、生物多様性のモニタリングに不可欠である。
本稿では,4つの多種多様な長い尾を持つデータセットの分類分類に関する12の視覚モデルを評価する。
- 参考スコア(独自算出の注目度): 0.310688583550805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ground beetles are a highly sensitive and speciose biological indicator, making them vital for monitoring biodiversity. However, they are currently an underutilized resource due to the manual effort required by taxonomic experts to perform challenging species differentiations based on subtle morphological differences, precluding widespread applications. In this paper, we evaluate 12 vision models on taxonomic classification across four diverse, long-tailed datasets spanning over 230 genera and 1769 species, with images ranging from controlled laboratory settings to challenging field-collected (in-situ) photographs. We further explore taxonomic classification in two important real-world contexts: sample efficiency and domain adaptation. Our results show that the Vision and Language Transformer combined with an MLP head is the best performing model, with 97\% accuracy at genus and 94\% at species level. Sample efficiency analysis shows that we can reduce train data requirements by up to 50\% with minimal compromise in performance. The domain adaptation experiments reveal significant challenges when transferring models from lab to in-situ images, highlighting a critical domain gap. Overall, our study lays a foundation for large-scale automated taxonomic classification of beetles, and beyond that, advances sample-efficient learning and cross-domain adaptation for diverse long-tailed ecological datasets.
- Abstract(参考訳): 地上の甲虫は、非常に敏感で特異な生物学的指標であり、生物多様性のモニタリングに不可欠である。
しかし、現在では、分類学の専門家が微妙な形態的差異に基づいて種分化に挑戦するために必要な手作業のために、広く適用される前に未利用の資源となっている。
本稿では,230種と1769種にまたがる4種類の多種長尾データセットの分類分類に関する12の視覚モデルを評価する。
さらに、サンプル効率とドメイン適応の2つの重要な実世界の文脈における分類学的分類について検討する。
以上の結果から,ビジョンと言語変換器をMLPヘッドと組み合わせることで,種レベルでは99%,種レベルでは99%の精度で,最高の性能のモデルであることが示唆された。
サンプル効率分析は、パフォーマンスの最小限の妥協で、列車のデータ要求を最大50倍まで削減できることを示している。
領域適応実験は、実験室からin-situ画像へモデルを転送する際の重要な課題を明らかにし、重要な領域ギャップを浮き彫りにする。
本研究は、甲虫の大規模自動分類の基礎を築き、さらに様々な長い尾を持つ生態データセットに対するサンプル効率の学習とクロスドメイン適応を進めた。
関連論文リスト
- DivShift: Exploring Domain-Specific Distribution Shifts in Large-Scale, Volunteer-Collected Biodiversity Datasets [0.0]
iNaturalistのような、コミュニティが特定した自然界の画像の大規模でボランティアが収集したデータセットは、機械学習手法を用いて種をきめ細かな視覚的分類するために、顕著なパフォーマンス向上を実現している。
ここでは、ドメイン固有の分散シフトが機械学習モデルの性能に与える影響を定量化するフレームワークであるDiversity Shiftを紹介する。
また、ボランティアが収集した生物多様性データに特有のバイアスの効果を診断するために、北米西海岸の約750万枚のiNaturalist画像のキュレートされたデータセットであるDivShift-North American West Coast (DivShift-NAWC)を紹介した。
論文 参考訳(メタデータ) (2024-10-17T23:56:30Z) - Comparison between transformers and convolutional models for
fine-grained classification of insects [7.107353918348911]
私たちはInsectaの分類学クラスを考えます。
昆虫の識別は多くの生態系の基盤にある住民の1つであるため、生物多様性監視に不可欠である。
何十億もの画像が自動的に分類され、ディープニューラルネットワークアルゴリズムが、きめ細かいタスクのために研究されている主要なテクニックの1つです。
論文 参考訳(メタデータ) (2023-07-20T10:00:04Z) - A Step Towards Worldwide Biodiversity Assessment: The BIOSCAN-1M Insect
Dataset [18.211840156134784]
本稿では,画像に基づく分類学的評価が可能なコンピュータビジョンモデルの訓練を目的とした,100万画像データセットを提案する。
このデータセットは魅力的な特徴も示しており、その研究はより広範な機械学習コミュニティにとって興味深いものとなるだろう。
論文 参考訳(メタデータ) (2023-07-19T20:54:08Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
ある種が観察された場所の集合を考えると、その種がどこにいても存在しないかを予測するためのモデルを構築することが目的である。
従来の手法は、新たな大規模クラウドソースデータセットを活用するのに苦労している。
本研究では,47k種の地理的範囲を同時に推定するために,空間入射ニューラル表現(SINR)を用いる。
論文 参考訳(メタデータ) (2023-06-05T03:36:01Z) - Ensembles of Vision Transformers as a New Paradigm for Automated
Classification in Ecology [0.0]
データ効率のよい画像変換器(DeiTs)のアンサンブルが従来のSOTA(SOTA)よりも大幅に優れていたことを示す。
テストしたすべてのデータセットに対して、新しいSOTAを実現し、以前のSOTAの18.48%から87.50%の誤差を削減した。
論文 参考訳(メタデータ) (2022-03-03T14:16:22Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
本研究では,長尾データを知識に基づいて複数のクラスサブセットに分割し,クラスサブセット学習を提案する。
モデルがサブセット固有の知識の学習に集中するように強制する。
提案手法は長期網膜疾患認識タスクに有効であることが判明した。
論文 参考訳(メタデータ) (2021-04-22T13:39:33Z) - Dynamic $\beta$-VAEs for quantifying biodiversity by clustering
optically recorded insect signals [0.6091702876917281]
本稿では,系統群によるデータのクラスタリングが可能な変分オートエンコーダ(VAE)の適応的変種を提案する。
南スカンジナビアの光記録昆虫信号に対する動的$beta$-VAEの有用性を実証した。
論文 参考訳(メタデータ) (2021-02-10T16:14:13Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern image from the same developmental stage。
正確な段階のトレーニングデータをラベル付けするのは、生物学者にとっても非常に時間がかかる。
限られた訓練画像を用いてISH画像を正確に分類する2段階の低ショット学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T06:06:06Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
本研究では,2視点の葉のイメージ表現に基づく新しい手法と,植物種の粒度認識のための階層的分類戦略を提案する。
シームズ畳み込みニューラルネットワークに基づく深度測定は、多数のトレーニングサンプルへの依存を減らし、新しい植物種に拡張性を持たせるために用いられる。
論文 参考訳(メタデータ) (2020-05-18T21:57:47Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。