LoRA-Based Continual Learning with Constraints on Critical Parameter Changes
- URL: http://arxiv.org/abs/2504.13407v1
- Date: Fri, 18 Apr 2025 02:08:19 GMT
- Title: LoRA-Based Continual Learning with Constraints on Critical Parameter Changes
- Authors: Shimou Ling, Liang Zhang, Jiangwei Zhao, Lili Pan, Hongliang Li,
- Abstract summary: LoRA-based continual learning represents a promising avenue for leveraging pre-trained models in downstream continual learning tasks.<n>We propose freezing the most critical parameter matrices in the Vision Transformer (ViT) for pre-tasks before learning post-tasks.<n>Our results indicate that our method achieves state-of-the-art (SOTA) performance on several well-known continual learning benchmarks.
- Score: 7.634417409656999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LoRA-based continual learning represents a promising avenue for leveraging pre-trained models in downstream continual learning tasks. Recent studies have shown that orthogonal LoRA tuning effectively mitigates forgetting. However, this work unveils that under orthogonal LoRA tuning, the critical parameters for pre-tasks still change notably after learning post-tasks. To address this problem, we directly propose freezing the most critical parameter matrices in the Vision Transformer (ViT) for pre-tasks before learning post-tasks. In addition, building on orthogonal LoRA tuning, we propose orthogonal LoRA composition (LoRAC) based on QR decomposition, which may further enhance the plasticity of our method. Elaborate ablation studies and extensive comparisons demonstrate the effectiveness of our proposed method. Our results indicate that our method achieves state-of-the-art (SOTA) performance on several well-known continual learning benchmarks. For instance, on the Split CIFAR-100 dataset, our method shows a 6.35\% improvement in accuracy and a 3.24\% reduction in forgetting compared to previous methods. Our code is available at https://github.com/learninginvision/LoRAC-IPC.
Related papers
- Reinforcement Learning for LLM Reasoning Under Memory Constraints [0.02488650627593658]
We introduce S-GRPO, a memory-efficient variant of Group Relative Policy Optimization, and T-SPMO, a token-level prefix matching strategy for fine-grained credit assignment.
Despite limited resources, when used to fine-tune Qwen2-1.5B both methods significantly improve SVAMP benchmark accuracy from 46% to above 70% using LoRA training.
We find that our full-token GRPO baseline under LoRA fine-tuning did not improve model performance (compared to base model) on either task.
arXiv Detail & Related papers (2025-04-29T14:58:43Z) - Robust Federated Finetuning of LLMs via Alternating Optimization of LoRA [14.789886179102425]
BERT-Efficient Fine-Tuning (PEFT) methods like Low-Rank Adaptation (LoRA) optimize federated training by reducing computational and communication costs.<n>We propose RoLoRA, a federated framework using alternating optimization to fine-tune LoRA adapters.
arXiv Detail & Related papers (2025-02-03T19:02:00Z) - SD-LoRA: Scalable Decoupled Low-Rank Adaptation for Class Incremental Learning [73.93639228235622]
Continual Learning with foundation models has emerged as a promising paradigm to exploit abundant knowledge acquired during pre-training for tackling sequential tasks.<n>Existing prompt-based and Low-Rank Adaptation-based (LoRA-based) methods often require expanding a prompt/LoRA pool or retaining samples of previous tasks.<n>We propose Scalable Decoupled LoRA (SD-LoRA) for class incremental learning, which continually separates the learning of the magnitude and direction of LoRA components without rehearsal.
arXiv Detail & Related papers (2025-01-22T20:00:41Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - Task-Specific Directions: Definition, Exploration, and Utilization in Parameter Efficient Fine-Tuning [65.31677646659895]
Large language models demonstrate impressive performance on downstream tasks, yet they require extensive resource consumption when fully fine-tuning all parameters.
We propose a framework to clearly define task-specific directions (TSDs) and explore their properties and practical utilization challenges.
We then introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process.
arXiv Detail & Related papers (2024-09-02T08:10:51Z) - MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning [105.11844150736536]
Low-rank adaptation is a popular parameter-efficient fine-tuning method for large language models.
We propose a new method called MoRA, which employs a square matrix to achieve high-rank updating while maintaining the same number of trainable parameters.
Our method outperforms LoRA on memory-intensive tasks and achieves comparable performance on other tasks.
arXiv Detail & Related papers (2024-05-20T15:48:32Z) - ResLoRA: Identity Residual Mapping in Low-Rank Adaption [96.59370314485074]
We propose ResLoRA, an improved framework of low-rank adaptation (LoRA)
Our method can achieve better results in fewer training steps without any extra trainable parameters or inference cost compared to LoRA.
The experiments on NLG, NLU, and text-to-image tasks demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-02-28T04:33:20Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
We introduce Chain of LoRA, an iterative optimization framework inspired by the Frank-Wolfe algorithm.
We demonstrate that COLA can consistently outperform LoRA without additional computational or memory costs.
arXiv Detail & Related papers (2024-01-08T14:26:49Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.