Robust Federated Finetuning of LLMs via Alternating Optimization of LoRA
- URL: http://arxiv.org/abs/2502.01755v2
- Date: Thu, 13 Feb 2025 03:42:24 GMT
- Title: Robust Federated Finetuning of LLMs via Alternating Optimization of LoRA
- Authors: Shuangyi Chen, Yuanxin Guo, Yue Ju, Harik Dalal, Ashish Khisti,
- Abstract summary: BERT-Efficient Fine-Tuning (PEFT) methods like Low-Rank Adaptation (LoRA) optimize federated training by reducing computational and communication costs.
We propose RoLoRA, a federated framework using alternating optimization to fine-tune LoRA adapters.
- Score: 14.789886179102425
- License:
- Abstract: Parameter-Efficient Fine-Tuning (PEFT) methods like Low-Rank Adaptation (LoRA) optimize federated training by reducing computational and communication costs. We propose RoLoRA, a federated framework using alternating optimization to fine-tune LoRA adapters. Our approach emphasizes the importance of learning up and down projection matrices to enhance expressiveness and robustness. We use both theoretical analysis and extensive experiments to demonstrate the advantages of RoLoRA over prior approaches that either generate imperfect model updates or limit expressiveness of the model. We present theoretical analysis on a simplified linear model to demonstrate the importance of learning both down-projection and up-projection matrices in LoRA. We provide extensive experimental evaluations on a toy neural network on MNIST as well as large language models including RoBERTa-Large, Llama-2-7B on diverse tasks to demonstrate the advantages of RoLoRA over other methods.
Related papers
- BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) has been widely adopted as one of the most effective parameter-efficient fine-tuning methods.
We propose BeamLoRA, which conceptualizes each LoRA module as a beam where each rank naturally corresponds to a potential sub-solution.
arXiv Detail & Related papers (2025-02-19T10:33:22Z) - DiffoRA: Enabling Parameter-Efficient LLM Fine-Tuning via Differential Low-Rank Matrix Adaptation [32.369133126167085]
We propose a new PEFT scheme called DiffoRA, which is theoretically grounded and enables module-wise adoption of LoRA.
At the core of our DiffoRA lies a Differential Adaptation Matrix (DAM) to determine which module is the most suitable and essential for fine-tuning.
Our approach achieves the best model accuracy over all the state-of-the-art baselines across various benchmarks.
arXiv Detail & Related papers (2025-02-13T02:41:34Z) - RepLoRA: Reparameterizing Low-Rank Adaptation via the Perspective of Mixture of Experts [37.43961020113692]
Low-rank adaptation (LoRA) has emerged as a powerful method for fine-tuning large-scale foundation models.
This paper presents a theoretical analysis of LoRA by examining its connection to the Mixture of Experts models.
arXiv Detail & Related papers (2025-02-05T10:03:09Z) - S-LoRA: Scalable Low-Rank Adaptation for Class Incremental Learning [73.93639228235622]
Continual Learning with foundation models has emerged as a promising approach to harnessing the power of pre-trained models for sequential tasks.
We propose a Scalable Low-Rank Adaptation (S-LoRA) method for CL (in particular class incremental learning), which incrementally decouples the learning of the direction and magnitude of LoRA parameters.
Our theoretical and empirical analysis demonstrates that S-LoRA tends to follow a low-loss trajectory that converges to an overlapped low-loss region, resulting in an excellent stability-plasticity trade-off in CL.
arXiv Detail & Related papers (2025-01-22T20:00:41Z) - Exploring Gradient Subspaces: Addressing and Overcoming LoRA's Limitations in Federated Fine-Tuning of Large Language Models [19.533062623518674]
This paper critically analyzes the convergence and performance guarantees of popular FL frameworks utilizing Low-Rank Adaptation (LoRA)
We demonstrate that direct weight averaging outperforms LoRA-based strategies, leading to superior performance for fine-tuned models.
Our findings show that GaLore along with direct-weight aggregation is a more effective approach, outperforming federated LoRA methods like FlexLoRA and FFA-LoRA across both text and image modalities.
arXiv Detail & Related papers (2024-10-30T15:23:44Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - LoRA Dropout as a Sparsity Regularizer for Overfitting Control [18.992276878667997]
We propose a LoRA Dropout mechanism for the LoRA-based methods.
We show that appropriate sparsity would help tighten the gap between empirical and generalization risks.
arXiv Detail & Related papers (2024-04-15T09:32:12Z) - DoRA: Weight-Decomposed Low-Rank Adaptation [57.68678247436207]
We introduce a novel weight decomposition analysis to investigate the inherent differences between FT and LoRA.
Aiming to resemble the learning capacity of FT from the findings, we propose Weight-Decomposed Low-Rank Adaptation (DoRA)
DoRA decomposes the pre-trained weight into two components, magnitude and direction, for fine-tuning.
arXiv Detail & Related papers (2024-02-14T17:59:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.