論文の概要: Simplifying Graph Convolutional Networks with Redundancy-Free Neighbors
- arxiv url: http://arxiv.org/abs/2504.13426v2
- Date: Mon, 21 Apr 2025 05:10:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 08:49:31.037734
- Title: Simplifying Graph Convolutional Networks with Redundancy-Free Neighbors
- Title(参考訳): 冗長な近傍を持つグラフ畳み込みネットワークの簡易化
- Authors: Jielong Lu, Zhihao Wu, Zhiling Cai, Yueyang Pi, Shiping Wang,
- Abstract要約: グラフ畳み込みネットワーク(GCN)の固有メッセージパッシング機構の解析
この低次隣人への繰り返し依存は、過剰集約(over-aggregation)という現象である冗長な情報集約につながる。
分析の結果,過剰凝集は大きな冗長性をもたらすだけでなく,GCNの過密化の原因となることが示唆された。
- 参考スコア(独自算出の注目度): 8.793707476780304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Graph Convolutional Networks (GCNs) have gained popularity for their exceptional ability to process graph-structured data. Existing GCN-based approaches typically employ a shallow model architecture due to the over-smoothing phenomenon. Current approaches to mitigating over-smoothing primarily involve adding supplementary components to GCN architectures, such as residual connections and random edge-dropping strategies. However, these improvements toward deep GCNs have achieved only limited success. In this work, we analyze the intrinsic message passing mechanism of GCNs and identify a critical issue: messages originating from high-order neighbors must traverse through low-order neighbors to reach the target node. This repeated reliance on low-order neighbors leads to redundant information aggregation, a phenomenon we term over-aggregation. Our analysis demonstrates that over-aggregation not only introduces significant redundancy but also serves as the fundamental cause of over-smoothing in GCNs.
- Abstract(参考訳): 近年、グラフ畳み込みネットワーク(GCN)はグラフ構造化データを処理する能力で人気を集めている。
既存のGCNベースのアプローチでは、オーバースムーシング現象のために浅いモデルアーキテクチャを用いるのが一般的である。
オーバースムース化を緩和する現在のアプローチは、主に残差接続やランダムエッジドロップ戦略など、GCNアーキテクチャに補足的なコンポーネントを追加することである。
しかし、深いGCNに対するこれらの改善は、限られた成功しか達成していない。
本稿では,GCNの本質的なメッセージパッシング機構を分析し,重要な問題を特定する。
この低次隣人への繰り返し依存は、過剰集約(over-aggregation)という現象である冗長な情報集約につながる。
分析の結果,過剰凝集は大きな冗長性をもたらすだけでなく,GCNの過密化の原因となることが示唆された。
関連論文リスト
- TSC: A Simple Two-Sided Constraint against Over-Smoothing [17.274727377858873]
グラフ畳み込みニューラルネットワーク(GCN)のための単純な2次元制約(TSC)を導入する。
ランダムマスキングは、隣人からの情報の集約の度合いを調整するために、表現行列の列に作用する。
表現行列の行に適用される対照的な制約は、ノードの識別可能性を高める。
論文 参考訳(メタデータ) (2024-08-06T12:52:03Z) - Demystifying Oversmoothing in Attention-Based Graph Neural Networks [23.853636836842604]
グラフニューラルネットワーク(GNN)におけるオーバースムーシング(Oversmoothing in Graph Neural Networks)とは、ネットワーク深度の増加がノードの均質表現につながる現象である。
これまでの研究により、グラフ畳み込みネットワーク(GCN)は指数関数的に表現力を失うことが判明した。
グラフアテンション機構が過剰なスムースを緩和できるかどうかはまだ議論の余地がある。
論文 参考訳(メタデータ) (2023-05-25T14:31:59Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Lightweight Graph Convolutional Networks with Topologically Consistent
Magnitude Pruning [12.18340575383456]
グラフ畳み込みネットワーク(GCN)は現在、不規則データによる学習で主流である。
本稿では,軽量GCN設計のための新しい手法を提案する。
提案手法は, トポロジ的整合性を確保しつつ, 最大等級で解析し, 選定する。
論文 参考訳(メタデータ) (2022-03-25T12:34:11Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
グラフ学習における最新の方向性として、SNN(Simplicial Neural Network)が最近登場した。
リンク予測のためのBlock Simplicial Complex Neural Networks (BScNets) モデルを提案する。
BScNetsは、コストを抑えながら最先端のモデルよりも大きなマージンを保っている。
論文 参考訳(メタデータ) (2021-12-13T17:35:54Z) - SStaGCN: Simplified stacking based graph convolutional networks [6.742080381542375]
グラフ畳み込みネットワーク(GCN)は、様々なグラフ構造データ学習タスクにおいて広く研究されている強力なモデルである。
本稿では, SStaGCN (Simplified stacking based GCN) と呼ばれる新しいGCNを提案する。
SStaGCNはGCNの過密問題を効果的に軽減できることを示す。
論文 参考訳(メタデータ) (2021-11-16T05:00:08Z) - Counting Substructures with Higher-Order Graph Neural Networks:
Possibility and Impossibility Results [58.277290855841976]
グラフニューラルネットワーク(GNN)の計算コストと表現力のトレードオフについて検討する。
新しいモデルでは、$k$のサブグラフをカウントでき、低次GNNの既知の制限を克服できることを示す。
いくつかの場合において、提案アルゴリズムは既存の高階$k$-GNNに比べて計算量を大幅に削減することができる。
論文 参考訳(メタデータ) (2020-12-06T03:42:54Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
グラフ畳み込みネットワーク(GCN)は,豊富な情報を持つ複雑なグラフにおいて,ノードの特徴と位相構造を最適に統合できるかどうかを検討する。
半教師付き分類(AM-GCN)のための適応型マルチチャネルグラフ畳み込みネットワークを提案する。
実験の結果,AM-GCNはノードの特徴とトポロジ的構造の両方から最も相関性の高い情報を抽出することがわかった。
論文 参考訳(メタデータ) (2020-07-05T08:16:03Z) - Scattering GCN: Overcoming Oversmoothness in Graph Convolutional
Networks [0.0]
グラフ畳み込みネットワーク(GCN)は,構造認識の特徴を抽出することによって,グラフデータ処理において有望な結果を示した。
本稿では、幾何学的散乱変換と残差畳み込みによる従来のGCNの増大を提案する。
前者はグラフ信号の帯域通過フィルタリングが可能であり、GCNでしばしば発生する過度な過度な処理を緩和する。
論文 参考訳(メタデータ) (2020-03-18T18:03:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。