論文の概要: Ascribe New Dimensions to Scientific Data Visualization with VR
- arxiv url: http://arxiv.org/abs/2504.13448v1
- Date: Fri, 18 Apr 2025 03:59:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 19:17:21.739693
- Title: Ascribe New Dimensions to Scientific Data Visualization with VR
- Title(参考訳): VRによる科学データ可視化の新しい次元
- Authors: Daniela Ushizima, Guilherme Melo dos Santos, Zineb Sordo, Ronald Pandolfi, Jeffrey Donatelli,
- Abstract要約: この記事では、Immersive Browsing & Explorationを使ったAutonomous Solutions for Computational ResearchのVRプラットフォームであるASCRIBE-VRを紹介する。
ASCRIBE-VRはマルチモーダル解析、構造評価、没入型可視化を可能にし、X線CT、磁気共鳴、合成3D画像などの高度なデータセットの科学的可視化をサポートする。
- 参考スコア(独自算出の注目度): 1.9084093324993718
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For over half a century, the computer mouse has been the primary tool for interacting with digital data, yet it remains a limiting factor in exploring complex, multi-scale scientific images. Traditional 2D visualization methods hinder intuitive analysis of inherently 3D structures. Virtual Reality (VR) offers a transformative alternative, providing immersive, interactive environments that enhance data comprehension. This article introduces ASCRIBE-VR, a VR platform of Autonomous Solutions for Computational Research with Immersive Browsing \& Exploration, which integrates AI-driven algorithms with scientific images. ASCRIBE-VR enables multimodal analysis, structural assessments, and immersive visualization, supporting scientific visualization of advanced datasets such as X-ray CT, Magnetic Resonance, and synthetic 3D imaging. Our VR tools, compatible with Meta Quest, can consume the output of our AI-based segmentation and iterative feedback processes to enable seamless exploration of large-scale 3D images. By merging AI-generated results with VR visualization, ASCRIBE-VR enhances scientific discovery, bridging the gap between computational analysis and human intuition in materials research, connecting human-in-the-loop with digital twins.
- Abstract(参考訳): 半世紀以上もの間、コンピューターマウスはデジタルデータと対話するための主要なツールだったが、複雑なマルチスケールの科学画像の探索には限界がある。
従来の2次元可視化手法は、本質的に3次元構造の直感的な解析を妨げる。
VR(Virtual Reality)は、データ理解を強化する没入的でインタラクティブな環境を提供する、変革的な代替手段を提供する。
この記事では、AI駆動アルゴリズムと科学画像を統合する、Immersive Browsing \& ExplorationによるAutonomous Solutions for Computational ResearchのVRプラットフォームであるASCRIBE-VRを紹介する。
ASCRIBE-VRはマルチモーダル解析、構造評価、没入型可視化を可能にし、X線CT、磁気共鳴、合成3D画像などの高度なデータセットの科学的可視化をサポートする。
Meta Questと互換性のある私たちのVRツールは、AIベースのセグメンテーションと反復的なフィードバックプロセスの出力を消費することで、大規模な3D画像のシームレスな探索を可能にします。
AIが生成した結果をVRの視覚化と組み合わせることで、ASCRIBE-VRは科学的な発見を強化し、材料研究における計算分析と人間の直感のギャップを埋める。
関連論文リスト
- Neuro-3D: Towards 3D Visual Decoding from EEG Signals [49.502364730056044]
脳波信号から3次元視覚知覚を復号する新しい神経科学タスクを導入する。
まず、ビデオと画像の両方でレンダリングされた72の3Dオブジェクトのカテゴリを閲覧する12人の被験者から、マルチモーダル分析データと脳波記録を含むデータセットであるEEG-3Dを提示する。
脳波信号に基づく3次元視覚デコーディングフレームワークNeuro-3Dを提案する。
論文 参考訳(メタデータ) (2024-11-19T05:52:17Z) - Coral Model Generation from Single Images for Virtual Reality Applications [22.18438294137604]
本稿では,1つの画像から高精度な3次元サンゴモデルを生成するディープラーニングフレームワークを提案する。
このプロジェクトには、AI生成モデルをインタラクティブな"アートワーク"に変換するための説明可能なAI(XAI)が組み込まれている。
論文 参考訳(メタデータ) (2024-09-04T01:54:20Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
被験者のfMRIデータを入力として利用する新しい3Dオブジェクト表現学習手法であるBrain3Dを設計する。
我々は,人間の視覚系の各領域の異なる機能的特徴を,我々のモデルが捉えていることを示す。
予備評価は、Brain3Dがシミュレーションシナリオで障害した脳領域を正常に識別できることを示唆している。
論文 参考訳(メタデータ) (2024-05-24T06:06:11Z) - Virtual Reality for Understanding Artificial-Intelligence-driven
Scientific Discovery with an Application in Quantum Optics [1.0858565995100633]
我々は、AI生成ソリューションの理解を深めるために、分析プロセスの一部を没入型バーチャルリアリティ環境に移行する方法を示す。
我々は,抽象グラフの解釈可能な構成を見つけるためのVRの有用性を実証し,量子光学実験を表現する。
論文 参考訳(メタデータ) (2024-02-20T17:48:01Z) - MinD-3D: Reconstruct High-quality 3D objects in Human Brain [50.534007259536715]
Recon3DMindは、fMRI(Functional Magnetic Resonance Imaging)信号から3次元視覚を再構成するための革新的なタスクである。
このデータセットは14人の参加者のデータを含み、3Dオブジェクトの360度ビデオが特徴である。
我々は,脳の3次元視覚情報をfMRI信号から復号化するための,新規で効果的な3段階フレームワークMinD-3Dを提案する。
論文 参考訳(メタデータ) (2023-12-12T18:21:36Z) - Multisensory extended reality applications offer benefits for volumetric biomedical image analysis in research and medicine [2.46537907738351]
高解像度ボリューム画像からの3Dデータは、現代医学における診断と治療の中心的な資源である。
近年の研究では、視覚深度知覚と触覚を持つ3次元画像の知覚に拡張現実(XR)を用いたが、制限的な触覚デバイスを用いた。
本研究では, バイオメディカル画像の専門家24名を対象に, 3次元医用形状を探索した。
論文 参考訳(メタデータ) (2023-11-07T13:37:47Z) - VRContour: Bringing Contour Delineations of Medical Structures Into
Virtual Reality [16.726748230138696]
コントゥーリングは放射線療法(RT)治療計画において必須のステップである。
今日のコンツーリングソフトウェアは2Dディスプレイでしか動作せず、直感的でなく、高いタスク負荷を必要とする。
本稿では,VRContourを紹介するとともに,放射線オンコロジーのためのコンツーリングを効果的にVRに持ち込む方法について検討する。
論文 参考訳(メタデータ) (2022-10-21T23:22:21Z) - Towards 3D VR-Sketch to 3D Shape Retrieval [128.47604316459905]
入力モダリティとしての3Dスケッチの利用について検討し、検索を行うVRシナリオを提唱する。
この新しい3DVR-Sketchから3D形状の検索問題に対する最初のスタンプとして、私たちは4つのコントリビューションを行います。
論文 参考訳(メタデータ) (2022-09-20T22:04:31Z) - Simple and Effective Synthesis of Indoor 3D Scenes [78.95697556834536]
1枚以上の画像から3D屋内シーンを没入する問題について検討する。
我々の狙いは、新しい視点から高解像度の画像とビデオを作成することである。
本稿では,不完全点雲の再投影から高解像度のRGB-D画像へ直接マップするイメージ・ツー・イメージのGANを提案する。
論文 参考訳(メタデータ) (2022-04-06T17:54:46Z) - ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation [75.0278287071591]
ThreeDWorld (TDW) はインタラクティブなマルチモーダル物理シミュレーションのためのプラットフォームである。
TDWは、リッチな3D環境において、高忠実な感覚データのシミュレーションと、移動体エージェントとオブジェクト間の物理的相互作用を可能にする。
我々は、コンピュータビジョン、機械学習、認知科学における新たな研究方向において、TDWによって実現された初期実験を提示する。
論文 参考訳(メタデータ) (2020-07-09T17:33:27Z) - A Markerless Deep Learning-based 6 Degrees of Freedom PoseEstimation for
with Mobile Robots using RGB Data [3.4806267677524896]
本稿では,拡張現実デバイス上でリアルタイムな3Dオブジェクトローカライゼーションを実現するために,アートニューラルネットワークの状態をデプロイする手法を提案する。
本研究では,2次元入力のみを用いて物体の3次元ポーズを高速かつ正確に抽出する高速な2次元検出手法に着目する。
2D画像の6Dアノテーションとして,私たちの知る限り,最初のオープンソースツールであるアノテーションツールを開発した。
論文 参考訳(メタデータ) (2020-01-16T09:13:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。