Learning from Noisy Pseudo-labels for All-Weather Land Cover Mapping
- URL: http://arxiv.org/abs/2504.13458v1
- Date: Fri, 18 Apr 2025 04:24:47 GMT
- Title: Learning from Noisy Pseudo-labels for All-Weather Land Cover Mapping
- Authors: Wang Liu, Zhiyu Wang, Xin Guo, Puhong Duan, Xudong Kang, Shutao Li,
- Abstract summary: SAR imagery lacks detailed information and is plagued by significant speckle noise.<n>Recent efforts have resorted to annotating paired optical-SAR images to generate pseudo-labels.<n>We introduce a more precise method for generating pseudo-labels by incorporating semi-supervised learning alongside a novel image resolution alignment augmentation.
- Score: 20.979328369582486
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Semantic segmentation of SAR images has garnered significant attention in remote sensing due to the immunity of SAR sensors to cloudy weather and light conditions. Nevertheless, SAR imagery lacks detailed information and is plagued by significant speckle noise, rendering the annotation or segmentation of SAR images a formidable task. Recent efforts have resorted to annotating paired optical-SAR images to generate pseudo-labels through the utilization of an optical image segmentation network. However, these pseudo-labels are laden with noise, leading to suboptimal performance in SAR image segmentation. In this study, we introduce a more precise method for generating pseudo-labels by incorporating semi-supervised learning alongside a novel image resolution alignment augmentation. Furthermore, we introduce a symmetric cross-entropy loss to mitigate the impact of noisy pseudo-labels. Additionally, a bag of training and testing tricks is utilized to generate better land-cover mapping results. Our experiments on the GRSS data fusion contest indicate the effectiveness of the proposed method, which achieves first place. The code is available at https://github.com/StuLiu/DFC2025Track1.git.
Related papers
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
Experimental results on three SAR datasets demonstrate that our WBANet significantly outperforms contemporary state-of-the-art methods.
Our WBANet achieves 98.33%, 96.65%, and 96.62% of percentage of correct classification (PCC) on the respective datasets.
arXiv Detail & Related papers (2024-07-18T04:36:10Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA) can effectively address domain gap issues in real-world image Super-Resolution (SR)
We propose a SOurce-free Domain Adaptation framework for image SR (SODA-SR) to address this issue, i.e., adapt a source-trained model to a target domain with only unlabeled target data.
arXiv Detail & Related papers (2023-03-31T03:14:44Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
We introduce the Deep Semantic Statistics Matching (D2SM) Denoising Network.
It exploits semantic features of pretrained classification networks, then it implicitly matches the probabilistic distribution of clear images at the semantic feature space.
By learning to preserve the semantic distribution of denoised images, we empirically find our method significantly improves the denoising capabilities of networks.
arXiv Detail & Related papers (2022-07-19T14:35:42Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Change Detection from Synthetic Aperture Radar Images via Dual Path
Denoising Network [38.78699830610313]
We propose a Dual Path Denoising Network (DPDNet) for SAR image change detection.
We introduce the random label propagation to clean the label noise involved in preclassification.
We also propose the distinctive patch convolution for feature representation learning to reduce the time consumption.
arXiv Detail & Related papers (2022-03-13T01:51:51Z) - Learning Efficient Representations for Enhanced Object Detection on
Large-scene SAR Images [16.602738933183865]
It is a challenging problem to detect and recognize targets on complex large-scene Synthetic Aperture Radar (SAR) images.
Recently developed deep learning algorithms can automatically learn the intrinsic features of SAR images.
We propose an efficient and robust deep learning based target detection method.
arXiv Detail & Related papers (2022-01-22T03:25:24Z) - Denoising and Optical and SAR Image Classifications Based on Feature
Extraction and Sparse Representation [0.0]
This paper presents a method for denoising, feature extraction and compares classifications of Optical and SAR images.
Optical image data have been used by the Remote Sensing workforce to study land use and cover since such data is easily interpretable.
arXiv Detail & Related papers (2021-06-03T14:39:30Z) - Synthetic Glacier SAR Image Generation from Arbitrary Masks Using
Pix2Pix Algorithm [12.087729834358928]
Supervised machine learning requires a large amount of labeled data to achieve proper test results.
In this work, we propose to alleviate the issue of limited training data by generating synthetic SAR images with the pix2pix algorithm.
We present different models, perform a comparative study and demonstrate that this approach synthesizes convincing glaciers in SAR images with promising qualitative and quantitative results.
arXiv Detail & Related papers (2021-01-08T23:30:00Z) - Attention-Aware Noisy Label Learning for Image Classification [97.26664962498887]
Deep convolutional neural networks (CNNs) learned on large-scale labeled samples have achieved remarkable progress in computer vision.
The cheapest way to obtain a large body of labeled visual data is to crawl from websites with user-supplied labels, such as Flickr.
This paper proposes the attention-aware noisy label learning approach to improve the discriminative capability of the network trained on datasets with potential label noise.
arXiv Detail & Related papers (2020-09-30T15:45:36Z) - SAR2SAR: a semi-supervised despeckling algorithm for SAR images [3.9490074068698]
Deep learning algorithm with self-supervision is proposed in this paper: SAR2SAR.
The strategy to adapt it to SAR despeckling is presented, based on a compensation of temporal changes and a loss function adapted to the statistics of speckle.
Results on real images are discussed, to show the potential of the proposed algorithm.
arXiv Detail & Related papers (2020-06-26T15:07:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.