Cross-Modal Temporal Fusion for Financial Market Forecasting
- URL: http://arxiv.org/abs/2504.13522v1
- Date: Fri, 18 Apr 2025 07:20:18 GMT
- Title: Cross-Modal Temporal Fusion for Financial Market Forecasting
- Authors: Yunhua Pei, John Cartlidge, Anandadeep Mandal, Daniel Gold, Enrique Marcilio, Riccardo Mazzon,
- Abstract summary: We introduce Cross-Modal Temporal Fusion (CMTF), a transformer-based framework that integrates heterogeneous financial data to improve predictive accuracy.<n>When applied to real-world financial datasets, CMTF demonstrates improvements over baseline models in forecasting stock price movements.
- Score: 3.0756278306759635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate financial market forecasting requires diverse data sources, including historical price trends, macroeconomic indicators, and financial news, each contributing unique predictive signals. However, existing methods often process these modalities independently or fail to effectively model their interactions. In this paper, we introduce Cross-Modal Temporal Fusion (CMTF), a novel transformer-based framework that integrates heterogeneous financial data to improve predictive accuracy. Our approach employs attention mechanisms to dynamically weight the contribution of different modalities, along with a specialized tensor interpretation module for feature extraction. To facilitate rapid model iteration in industry applications, we incorporate a mature auto-training scheme that streamlines optimization. When applied to real-world financial datasets, CMTF demonstrates improvements over baseline models in forecasting stock price movements and provides a scalable and effective solution for cross-modal integration in financial market prediction.
Related papers
- FinTSB: A Comprehensive and Practical Benchmark for Financial Time Series Forecasting [58.70072722290475]
Financial time series (FinTS) record the behavior of human-brain-augmented decision-making.<n>FinTSB is a comprehensive and practical benchmark for financial time series forecasting.
arXiv Detail & Related papers (2025-02-26T05:19:16Z) - The AI Black-Scholes: Finance-Informed Neural Network [11.339331636751329]
In option pricing, existing models are typically classified into principle-driven methods and data-driven approaches.<n>In contrast, data-driven models excel in capturing market data trends, but they often lack alignment with core financial principles.<n>This work proposes a hybrid approach to address these limitations by integrating the strengths of both principled and data-driven methodologies.
arXiv Detail & Related papers (2024-12-15T22:40:40Z) - BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - MCI-GRU: Stock Prediction Model Based on Multi-Head Cross-Attention and Improved GRU [15.232546605091818]
This paper proposes a stock prediction model, MCI-GRU, based on a multi-head cross-attention mechanism and an improved GRU.<n> Experiments on four main stock markets show that the proposed method outperforms SOTA techniques across multiple metrics.
arXiv Detail & Related papers (2024-09-25T14:37:49Z) - Stock Movement Prediction with Multimodal Stable Fusion via Gated Cross-Attention Mechanism [11.6870352823637]
This study introduces a novel architecture, named Multimodal Stable Fusion with Gated Cross-Attention (MSGCA), designed to robustly integrate multimodal input for stock movement prediction.<n>MSGCA framework consists of three integral components: (1) a trimodal encoding module, responsible for processing indicator sequences, dynamic documents, and a relational graph, and standardizing their feature representations; (2) a cross-feature fusion module, where primary and consistent features guide the multimodal fusion of the three modalities via a pair of gated cross-attention networks; and (3) a prediction module, which refines the fused features through temporal and dimensional reduction to execute precise
arXiv Detail & Related papers (2024-06-06T03:13:34Z) - DiffSTOCK: Probabilistic relational Stock Market Predictions using Diffusion Models [1.9662978733004601]
We develop an architecture for providing better market predictions conditioned on the historical financial indicators and inter-stock relations.
We also provide a novel deterministic architecture MaTCHS which uses Masked Transformer(RTM) to exploit inter-stock relations along with historical stock features.
arXiv Detail & Related papers (2024-03-21T01:20:32Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
Multiple time series such as financial indicators, stock prices and exchange rates are strongly coupled due to their dependence on the latent state of the market.
We focus on learning the relationships among financial time series by modelling them through a multi-output Gaussian process.
arXiv Detail & Related papers (2020-02-11T19:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.