論文の概要: Q-FAKER: Query-free Hard Black-box Attack via Controlled Generation
- arxiv url: http://arxiv.org/abs/2504.13551v1
- Date: Fri, 18 Apr 2025 08:36:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 16:38:18.387678
- Title: Q-FAKER: Query-free Hard Black-box Attack via Controlled Generation
- Title(参考訳): Q-FAKER: 制御生成によるクエリフリーなハードブラックボックス攻撃
- Authors: CheolWon Na, YunSeok Choi, Jee-Hyong Lee,
- Abstract要約: 言語モデルの脆弱性を検証するために,逆攻撃手法を提案する。
多数のクエリとターゲットモデルに関する情報が必要です。
ブラックボックス攻撃方法でさえもターゲットモデルの出力情報を必要とする。
対象モデルにアクセスすることなく、敵の例を生成する、新規で効率的な方法であるQ-fakerを提案する。
- 参考スコア(独自算出の注目度): 16.923816556726322
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Many adversarial attack approaches are proposed to verify the vulnerability of language models. However, they require numerous queries and the information on the target model. Even black-box attack methods also require the target model's output information. They are not applicable in real-world scenarios, as in hard black-box settings where the target model is closed and inaccessible. Even the recently proposed hard black-box attacks still require many queries and demand extremely high costs for training adversarial generators. To address these challenges, we propose Q-faker (Query-free Hard Black-box Attacker), a novel and efficient method that generates adversarial examples without accessing the target model. To avoid accessing the target model, we use a surrogate model instead. The surrogate model generates adversarial sentences for a target-agnostic attack. During this process, we leverage controlled generation techniques. We evaluate our proposed method on eight datasets. Experimental results demonstrate our method's effectiveness including high transferability and the high quality of the generated adversarial examples, and prove its practical in hard black-box settings.
- Abstract(参考訳): 言語モデルの脆弱性を検証するために,多くの逆攻撃手法が提案されている。
しかし、それらは多数のクエリとターゲットモデルに関する情報を必要とする。
ブラックボックス攻撃方法でさえもターゲットモデルの出力情報を必要とする。
ターゲットモデルを閉じてアクセスできないハードブラックボックス設定のように、現実のシナリオでは適用できない。
最近提案されたハードブラックボックス攻撃でさえ、多くのクエリを必要とし、敵ジェネレータを訓練するのに非常に高いコストを必要とする。
これらの課題に対処するために、ターゲットモデルにアクセスすることなく敵の例を生成する新しい、効率的な方法であるQ-faker (Query-free Hard Black-box Attacker)を提案する。
ターゲットモデルにアクセスするのを避けるため、代用として代理モデルを使用する。
代理モデルは、標的非依存攻撃に対する逆文を生成する。
この過程で我々は制御された生成技術を活用する。
提案手法を8つのデータセットで評価した。
実験により, 高い転送性, 生成した逆数例の高品質性などの手法の有効性を実証し, ハードブラックボックス環境での実用性を示した。
関連論文リスト
- Certifiable Black-Box Attacks with Randomized Adversarial Examples: Breaking Defenses with Provable Confidence [34.35162562625252]
ブラックボックスの敵攻撃は、機械学習モデルを妥協する強力な可能性を示している。
証明可能な保証付きブラックボックス攻撃の新たなパラダイムについて検討する。
この新しいブラックボックス攻撃は、機械学習モデルの重大な脆弱性を露呈する。
論文 参考訳(メタデータ) (2023-04-10T01:12:09Z) - Ensemble-based Blackbox Attacks on Dense Prediction [16.267479602370543]
慎重に設計されたアンサンブルは、多くの犠牲者モデルに対して効果的な攻撃を発生させることができることを示す。
特に,個々のモデルに対する重み付けの正規化が,攻撃の成功に重要な役割を担っていることを示す。
提案手法は同時に複数のブラックボックス検出とセグメンテーションモデルを騙すことができる単一摂動を生成することができる。
論文 参考訳(メタデータ) (2023-03-25T00:08:03Z) - Generalizable Black-Box Adversarial Attack with Meta Learning [54.196613395045595]
ブラックボックス攻撃では、ターゲットモデルのパラメータが不明であり、攻撃者はクエリのフィードバックに基づいて、クエリの予算に基づいて摂動を成功させることを目指している。
本稿では,実例レベルの逆転可能性という,過去の攻撃に対するフィードバック情報を活用することを提案する。
この2種類の逆転送性を持つフレームワークは,市販のクエリベースのアタック手法と自然に組み合わせて性能を向上させることができる。
論文 参考訳(メタデータ) (2023-01-01T07:24:12Z) - Query Efficient Cross-Dataset Transferable Black-Box Attack on Action
Recognition [99.29804193431823]
ブラックボックスの敵攻撃は、行動認識システムに現実的な脅威をもたらす。
本稿では,摂動を発生させることにより,これらの欠点に対処する新たな行動認識攻撃を提案する。
提案手法は,最先端のクエリベースおよび転送ベース攻撃と比較して,8%,12%の偽装率を達成する。
論文 参考訳(メタデータ) (2022-11-23T17:47:49Z) - Training Meta-Surrogate Model for Transferable Adversarial Attack [98.13178217557193]
クエリーを許可しない場合、ブラックボックスモデルに対する逆攻撃を考える。
この設定では、多くの手法が代理モデルを直接攻撃し、得られた敵の例をターゲットモデルを騙すために転送する。
メタサロゲートモデル(Meta-Surrogate Model:MSM)は,このモデルに対する攻撃が,他のモデルに容易に転送できることを示す。
論文 参考訳(メタデータ) (2021-09-05T03:27:46Z) - Explain2Attack: Text Adversarial Attacks via Cross-Domain
Interpretability [18.92690624514601]
研究によると、下流のモデルは、トレーニングデータのような敵対的な入力で簡単に騙されるが、わずかに混乱している。
本稿では,テキスト分類タスクに対するブラックボックス攻撃であるExplain2Attackを提案する。
我々のフレームワークは、最先端モデルのアタックレートを達成または上回る一方、クエリコストの低減と効率の向上を図っている。
論文 参考訳(メタデータ) (2020-10-14T04:56:41Z) - Improving Query Efficiency of Black-box Adversarial Attack [75.71530208862319]
ニューラルプロセスに基づくブラックボックス対逆攻撃(NP-Attack)を提案する。
NP-Attackはブラックボックス設定でクエリ数を大幅に削減できる。
論文 参考訳(メタデータ) (2020-09-24T06:22:56Z) - Simple and Efficient Hard Label Black-box Adversarial Attacks in Low
Query Budget Regimes [80.9350052404617]
そこで我々は,ブラックボックス攻撃の簡易かつ効率的なベイズ最適化(BO)に基づく手法を提案する。
高次元におけるBOの性能に関する問題は、構造化された低次元部分空間における逆例を探すことによって回避される。
提案手法は,10倍から20倍のクエリを必要としながら,攻撃成功率を2倍から10倍に向上させる。
論文 参考訳(メタデータ) (2020-07-13T04:34:57Z) - Spanning Attack: Reinforce Black-box Attacks with Unlabeled Data [96.92837098305898]
Black-box攻撃は、機械学習モデルのインプット・アウトプットペアをクエリすることで、敵の摂動を発生させることを目的としている。
ブラックボックス攻撃はしばしば、入力空間の高次元性のためにクエリ非効率性の問題に悩まされる。
本研究では,低次元部分空間における逆摂動を,補助的なラベルのないデータセットに分散させることで抑制するスパンニング攻撃と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2020-05-11T05:57:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。