Task Assignment and Exploration Optimization for Low Altitude UAV Rescue via Generative AI Enhanced Multi-agent Reinforcement Learning
- URL: http://arxiv.org/abs/2504.13554v2
- Date: Thu, 10 Jul 2025 07:28:13 GMT
- Title: Task Assignment and Exploration Optimization for Low Altitude UAV Rescue via Generative AI Enhanced Multi-agent Reinforcement Learning
- Authors: Xin Tang, Qian Chen, Wenjie Weng, Chao Jin, Zhang Liu, Jiacheng Wang, Geng Sun, Xiaohuan Li, Dusit Niyato,
- Abstract summary: This paper proposes a cooperation framework involving UAVs, GERs, and airships.<n>The framework enables resource pooling through UAV-to-GER (U2G) and UAV-to-airship (U2A) links, offering computing services for offloaded tasks.
- Score: 44.02103029265148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of emerging uncrewed aerial vehicles (UAVs) with artificial intelligence (AI) and ground-embedded robots (GERs) has transformed emergency rescue operations in unknown environments. However, the high computational demands often exceed a single UAV's capacity, making it difficult to continuously provide stable high-level services. To address this, this paper proposes a cooperation framework involving UAVs, GERs, and airships. The framework enables resource pooling through UAV-to-GER (U2G) and UAV-to-airship (U2A) links, offering computing services for offloaded tasks. Specifically, we formulate the multi-objective problem of task assignment and exploration as a dynamic long-term optimization problem aiming to minimize task completion time and energy use while ensuring stability. Using Lyapunov optimization, we transform it into a per-slot deterministic problem and propose HG-MADDPG, which combines the Hungarian algorithm with a GDM-based multi-agent deep deterministic policy gradient. Simulations demonstrate significant improvements in offloading efficiency, latency, and system stability over baselines.
Related papers
- LLM Meets the Sky: Heuristic Multi-Agent Reinforcement Learning for Secure Heterogeneous UAV Networks [57.27815890269697]
This work focuses on maximizing the secrecy rate in heterogeneous UAV networks (HetUAVNs) under energy constraints.<n>We introduce a Large Language Model (LLM)-guided multi-agent learning approach.<n>Results show that our method outperforms existing baselines in secrecy and energy efficiency.
arXiv Detail & Related papers (2025-07-23T04:22:57Z) - Hierarchical Task Offloading for UAV-Assisted Vehicular Edge Computing via Deep Reinforcement Learning [11.695622067301128]
We propose a dual-layer UAV-assisted edge computing architecture based on partial offloading.<n>The proposed architecture enables efficient integration and coordination of heterogeneous resources.<n>We show that the proposed approach outperforms several baselines in task completion rate, system efficiency, and convergence speed.
arXiv Detail & Related papers (2025-07-08T07:10:52Z) - Aerial Secure Collaborative Communications under Eavesdropper Collusion in Low-altitude Economy: A Generative Swarm Intelligent Approach [84.20358039333756]
We introduce distributed collaborative beamforming (DCB) into AAV swarms and handle the eavesdropper collusion by controlling the corresponding signal distributions.<n>We minimize the two-way known secrecy capacity and maximum sidelobe level to avoid information leakage from the known and unknown eavesdroppers.<n>We propose a novel generative swarm intelligence (GenSI) framework to solve the problem with less overhead.
arXiv Detail & Related papers (2025-03-02T04:02:58Z) - Generative AI-Enhanced Cooperative MEC of UAVs and Ground Stations for Unmanned Surface Vehicles [36.3157805511305]
Unmanned surface vehicles (USVs) offer low-cost, flexible aerial services.<n>Ground stations (GSs) can provide powerful supports, which can cooperate to help the USVs in complex scenarios.<n>We propose a cooperative UAV and GS based robust multi-access edge computing framework to assist USVs in completing computational tasks.
arXiv Detail & Related papers (2025-02-12T04:42:59Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.<n>In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.<n>The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
Low-altitude economy holds significant potential for development in areas such as communication and sensing.<n>We propose a Clustering-based Multi-agent Deep Deterministic Policy Gradient (CMADDPG) algorithm to address the multi-UAV cooperative task scheduling challenges in SAGIN.
arXiv Detail & Related papers (2024-12-14T06:17:33Z) - DNN Task Assignment in UAV Networks: A Generative AI Enhanced Multi-Agent Reinforcement Learning Approach [16.139481340656552]
This paper presents a joint approach that combines multiple-agent reinforcement learning (MARL) and generative diffusion models (GDM)<n>In the second stage, we introduce a novel DNN task assignment algorithm, termed GDM-MADDPG, which utilizes the reverse denoising process of GDM to replace the actor network in multi-agent deep deterministic policy gradient (MADDPG)<n> Simulation results indicate that our algorithm performs favorably compared to benchmarks in terms of path planning, Age of Information (AoI), energy consumption, and task load balancing.
arXiv Detail & Related papers (2024-11-13T02:41:02Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Research on an Autonomous UAV Search and Rescue System Based on the Improved [1.3399503792039942]
This paper proposes an autonomous search and rescue UAV system based on an EGO-Planner algorithm.
It takes the methods of inverse motor backstepping to enhance the overall flight efficiency of the UAV and miniaturization of the whole machine.
At the same time, the system introduced the EGO-Planner planning tool, which is optimized by a bidirectional A* algorithm along with an object detection algorithm.
arXiv Detail & Related papers (2024-06-01T17:25:29Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.