MAAM: A Lightweight Multi-Agent Aggregation Module for Efficient Image Classification Based on the MindSpore Framework
- URL: http://arxiv.org/abs/2504.13574v1
- Date: Fri, 18 Apr 2025 09:19:07 GMT
- Title: MAAM: A Lightweight Multi-Agent Aggregation Module for Efficient Image Classification Based on the MindSpore Framework
- Authors: Zhenkai Qin, Feng Zhu, Huan Zeng, Xunyi Nong,
- Abstract summary: We propose a lightweight attention architecture integrated with the MindSpore framework.<n>The Multi-Agent Aggregation Module (MAAM) employs three parallel agent branches with independently parameterized operations to extract heterogeneous features.<n>Using MindSpore's dynamic computational graph and operator fusion, MAAM achieves 87.0% accuracy on the CIFAR-10 dataset.
- Score: 4.307728769243765
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The demand for lightweight models in image classification tasks under resource-constrained environments necessitates a balance between computational efficiency and robust feature representation. Traditional attention mechanisms, despite their strong feature modeling capability, often struggle with high computational complexity and structural rigidity, limiting their applicability in scenarios with limited computational resources (e.g., edge devices or real-time systems). To address this, we propose the Multi-Agent Aggregation Module (MAAM), a lightweight attention architecture integrated with the MindSpore framework. MAAM employs three parallel agent branches with independently parameterized operations to extract heterogeneous features, adaptively fused via learnable scalar weights, and refined through a convolutional compression layer. Leveraging MindSpore's dynamic computational graph and operator fusion, MAAM achieves 87.0% accuracy on the CIFAR-10 dataset, significantly outperforming conventional CNN (58.3%) and MLP (49.6%) models, while improving training efficiency by 30%. Ablation studies confirm the critical role of agent attention (accuracy drops to 32.0% if removed) and compression modules (25.5% if omitted), validating their necessity for maintaining discriminative feature learning. The framework's hardware acceleration capabilities and minimal memory footprint further demonstrate its practicality, offering a deployable solution for image classification in resource-constrained scenarios without compromising accuracy.
Related papers
- MIA-Mind: A Multidimensional Interactive Attention Mechanism Based on MindSpore [0.0]
We propose MIA-Mind, a lightweight and modular Multidimensional Interactive Attention Mechanism.
MIA-Mind jointly models spatial and channel features through a unified cross-attentive fusion strategy.
Experiments are conducted on three representative datasets.
arXiv Detail & Related papers (2025-04-27T02:27:50Z) - AdaptoVision: A Multi-Resolution Image Recognition Model for Robust and Scalable Classification [0.0]
AdaptoVision is a novel convolutional neural network (CNN) architecture designed to efficiently balance computational complexity and classification accuracy.<n>By leveraging enhanced residual units, depth-wise separable convolutions, and hierarchical skip connections, AdaptoVision significantly reduces parameter count and computational requirements.<n>It achieves state-of-the-art on BreakHis dataset and comparable accuracy levels, notably 95.3% on CIFAR-10 and 85.77% on CIFAR-100, without relying on any pretrained weights.
arXiv Detail & Related papers (2025-04-17T05:23:07Z) - An Efficient and Mixed Heterogeneous Model for Image Restoration [71.85124734060665]
Current mainstream approaches are based on three architectural paradigms: CNNs, Transformers, and Mambas.<n>We propose RestorMixer, an efficient and general-purpose IR model based on mixed-architecture fusion.
arXiv Detail & Related papers (2025-04-15T08:19:12Z) - Q-MambaIR: Accurate Quantized Mamba for Efficient Image Restoration [34.43633070396096]
State-Space Models (SSMs) have attracted considerable attention in Image Restoration (IR)<n>Q-MambaIR is an accurate, efficient, and flexible Quantized Mamba for IR tasks.
arXiv Detail & Related papers (2025-03-27T20:34:11Z) - MambaIC: State Space Models for High-Performance Learned Image Compression [53.991726013454695]
A high-performance image compression algorithm is crucial for real-time information transmission across numerous fields.
Inspired by the effectiveness of state space models (SSMs) in capturing long-range dependencies, we leverage SSMs to address computational inefficiency in existing methods.
We propose an enhanced image compression approach through refined context modeling, which we term MambaIC.
arXiv Detail & Related papers (2025-03-16T11:32:34Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks.<n>By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections.<n>Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
arXiv Detail & Related papers (2024-05-23T11:10:32Z) - PMFSNet: Polarized Multi-scale Feature Self-attention Network For
Lightweight Medical Image Segmentation [6.134314911212846]
Current state-of-the-art medical image segmentation methods prioritize accuracy but often at the expense of increased computational demands and larger model sizes.
We propose PMFSNet, a novel medical imaging segmentation model that balances global local feature processing while avoiding computational redundancy.
It incorporates a plug-and-play PMFS block, a multi-scale feature enhancement module based on attention mechanisms, to capture long-term dependencies.
arXiv Detail & Related papers (2024-01-15T10:26:47Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
We introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR)
CFSR inherits the advantages of both convolution-based and transformer-based approaches.
Experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance.
arXiv Detail & Related papers (2024-01-11T03:08:00Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - DeepScaler: Holistic Autoscaling for Microservices Based on
Spatiotemporal GNN with Adaptive Graph Learning [4.128665560397244]
This paper presents DeepScaler, a deep learning-based holistic autoscaling approach.
It focuses on coping with service dependencies to optimize service-level agreements (SLA) assurance and cost efficiency.
Experimental results demonstrate that our method implements a more effective autoscaling mechanism for microservice.
arXiv Detail & Related papers (2023-09-02T08:22:21Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.