ViG3D-UNet: Volumetric Vascular Connectivity-Aware Segmentation via 3D Vision Graph Representation
- URL: http://arxiv.org/abs/2504.13599v1
- Date: Fri, 18 Apr 2025 10:06:45 GMT
- Title: ViG3D-UNet: Volumetric Vascular Connectivity-Aware Segmentation via 3D Vision Graph Representation
- Authors: Bowen Liu, Chunlei Meng, Wei Lin, Hongda Zhang, Ziqing Zhou, Zhongxue Gan, Chun Ouyang,
- Abstract summary: A 3D vision graph neural network framework, named ViG3D-UNet, was introduced to facilitate continuous vascular segmentation.<n>The ViG3D-UNet method integrates 3D graph representation and aggregation within a U-shaped architecture to facilitate continuous vascular segmentation.
- Score: 13.363621889050426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate vascular segmentation is essential for coronary visualization and the diagnosis of coronary heart disease. This task involves the extraction of sparse tree-like vascular branches from the volumetric space. However, existing methods have faced significant challenges due to discontinuous vascular segmentation and missing endpoints. To address this issue, a 3D vision graph neural network framework, named ViG3D-UNet, was introduced. This method integrates 3D graph representation and aggregation within a U-shaped architecture to facilitate continuous vascular segmentation. The ViG3D module captures volumetric vascular connectivity and topology, while the convolutional module extracts fine vascular details. These two branches are combined through channel attention to form the encoder feature. Subsequently, a paperclip-shaped offset decoder minimizes redundant computations in the sparse feature space and restores the feature map size to match the original input dimensions. To evaluate the effectiveness of the proposed approach for continuous vascular segmentation, evaluations were performed on two public datasets, ASOCA and ImageCAS. The segmentation results show that the ViG3D-UNet surpassed competing methods in maintaining vascular segmentation connectivity while achieving high segmentation accuracy. Our code will be available soon.
Related papers
- DBF-UNet: A Two-Stage Framework for Carotid Artery Segmentation with Pseudo-Label Generation [8.22650587342049]
We propose a two-stage segmentation framework to address the sparse annotation challenge in carotid artery segmentation.<n>We construct continuous vessel centerlines by interpolating between annotated slice centroids and propagate labels along these centerlines.<n>In the second stage, we propose a novel Dense Bidirectional Feature Fusion UNet.
arXiv Detail & Related papers (2025-04-01T15:41:57Z) - 3D Vascular Segmentation Supervised by 2D Annotation of Maximum
Intensity Projection [33.34240545722551]
Vascular structure segmentation plays a crucial role in medical analysis and clinical applications.
Existing weakly supervised methods have exhibited suboptimal performance when handling sparse vascular structure.
Here, we employ maximum intensity projection (MIP) to decrease the dimensionality of 3D volume to 2D image for efficient annotation.
We introduce a weakly-supervised network that fuses 2D-3D deep features via MIP to further improve segmentation performance.
arXiv Detail & Related papers (2024-02-19T13:24:46Z) - Vision Transformers increase efficiency of 3D cardiac CT multi-label
segmentation [0.0]
Two cardiac computed tomography (CT) datasets were used to train networks to segment multiple regions representing the whole heart in 3D.
The segmented regions included the left and right atrium and ventricle, left ventricular myocardium, ascending aorta, pulmonary arteries, pulmonary veins, and left atrial appendage.
arXiv Detail & Related papers (2023-10-13T13:35:19Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Semi-Supervised Hybrid Spine Network for Segmentation of Spine MR Images [14.190504802866288]
We propose a two-stage algorithm, named semi-supervised hybrid spine network (SSHSNet) to achieve simultaneous vertebral bodies (VBs) and intervertebral discs (IVDs) segmentation.
In the first stage, we constructed a 2D semi-supervised DeepLabv3+ by using cross pseudo supervision to obtain intra-slice features and coarse segmentation.
In the second stage, a 3D full-resolution patch-based DeepLabv3+ was built to extract inter-slice information.
Results show that the proposed method has great potential in dealing with the data imbalance problem
arXiv Detail & Related papers (2022-03-23T02:57:14Z) - PAENet: A Progressive Attention-Enhanced Network for 3D to 2D Retinal
Vessel Segmentation [0.0]
3D to 2D retinal vessel segmentation is a challenging problem in Optical Coherence Tomography Angiography ( OCTA) images.
We propose a Progressive Attention-Enhanced Network (PAENet) based on attention mechanisms to extract rich feature representation.
Our proposed algorithm achieves state-of-the-art performance compared with previous methods.
arXiv Detail & Related papers (2021-08-26T10:27:25Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
Automatic blood vessel extraction from 3D medical images is crucial for vascular disease diagnoses.
Existing methods may suffer from discontinuities of extracted vessels when segmenting such thin tubular structures from 3D images.
We argue that preserving the continuity of extracted vessels requires to take into account the global geometry.
We propose a hybrid representation learning approach to address this challenge.
arXiv Detail & Related papers (2020-12-14T05:22:49Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - Cylindrical Convolutional Networks for Joint Object Detection and
Viewpoint Estimation [76.21696417873311]
We introduce a learnable module, cylindrical convolutional networks (CCNs), that exploit cylindrical representation of a convolutional kernel defined in the 3D space.
CCNs extract a view-specific feature through a view-specific convolutional kernel to predict object category scores at each viewpoint.
Our experiments demonstrate the effectiveness of the cylindrical convolutional networks on joint object detection and viewpoint estimation.
arXiv Detail & Related papers (2020-03-25T10:24:58Z) - clDice -- A Novel Topology-Preserving Loss Function for Tubular
Structure Segmentation [57.20783326661043]
We introduce a novel similarity measure termed centerlineDice (short clDice)
We theoretically prove that clDice guarantees topology preservation up to homotopy equivalence for binary 2D and 3D segmentation.
We benchmark the soft-clDice loss on five public datasets, including vessels, roads and neurons (2D and 3D)
arXiv Detail & Related papers (2020-03-16T16:27:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.