DBF-UNet: A Two-Stage Framework for Carotid Artery Segmentation with Pseudo-Label Generation
- URL: http://arxiv.org/abs/2504.00908v1
- Date: Tue, 01 Apr 2025 15:41:57 GMT
- Title: DBF-UNet: A Two-Stage Framework for Carotid Artery Segmentation with Pseudo-Label Generation
- Authors: Haoxuan Li, Wei Song, Aofan Liu, Peiwu Qin,
- Abstract summary: We propose a two-stage segmentation framework to address the sparse annotation challenge in carotid artery segmentation.<n>We construct continuous vessel centerlines by interpolating between annotated slice centroids and propagate labels along these centerlines.<n>In the second stage, we propose a novel Dense Bidirectional Feature Fusion UNet.
- Score: 8.22650587342049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image analysis faces significant challenges due to limited annotation data, particularly in three-dimensional carotid artery segmentation tasks, where existing datasets exhibit spatially discontinuous slice annotations with only a small portion of expert-labeled slices in complete 3D volumetric data. To address this challenge, we propose a two-stage segmentation framework. First, we construct continuous vessel centerlines by interpolating between annotated slice centroids and propagate labels along these centerlines to generate interpolated annotations for unlabeled slices. The slices with expert annotations are used for fine-tuning SAM-Med2D, while the interpolated labels on unlabeled slices serve as prompts to guide segmentation during inference. In the second stage, we propose a novel Dense Bidirectional Feature Fusion UNet (DBF-UNet). This lightweight architecture achieves precise segmentation of complete 3D vascular structures. The network incorporates bidirectional feature fusion in the encoder and integrates multi-scale feature aggregation with dense connectivity for effective feature reuse. Experimental validation on public datasets demonstrates that our proposed method effectively addresses the sparse annotation challenge in carotid artery segmentation while achieving superior performance compared to existing approaches. The source code is available at https://github.com/Haoxuanli-Thu/DBF-UNet.
Related papers
- GeoT: Geometry-guided Instance-dependent Transition Matrix for Semi-supervised Tooth Point Cloud Segmentation [48.64133802117796]
GeoT is a framework that employs instance-dependent transition matrix (IDTM) to explicitly model noise in pseudo labels for semi-supervised dental segmentation.<n>Specifically, to handle the extensive solution space of IDTM arising from tens of thousands of dental points, we introduce tooth geometric priors.<n>Our method can make full utilization of unlabeled data to facilitate segmentation, achieving performance comparable to fully supervised methods with only $20%$ of the labeled data.
arXiv Detail & Related papers (2025-03-21T09:43:57Z) - Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3D segmentation is a core problem in computer vision.
densely labeling 3D point clouds to employ fully-supervised training remains too labor intensive and expensive.
Semi-supervised training provides a more practical alternative, where only a small set of labeled data is given, accompanied by a larger unlabeled set.
arXiv Detail & Related papers (2024-09-12T14:54:31Z) - Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment [62.73503467108322]
This topic is widely studied in 3D point cloud segmentation due to the difficulty of annotating point clouds densely.
Until recently, pseudo-labels have been widely employed to facilitate training with limited ground-truth labels.
Existing pseudo-labeling approaches could suffer heavily from the noises and variations in unlabelled data.
We propose a novel learning strategy to regularize the pseudo-labels generated for training, thus effectively narrowing the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2024-08-29T13:31:15Z) - Few-Shot 3D Volumetric Segmentation with Multi-Surrogate Fusion [31.736235596070937]
We present MSFSeg, a novel few-shot 3D segmentation framework with a lightweight multi-surrogate fusion (MSF)
MSFSeg is able to automatically segment unseen 3D objects/organs (during training) provided with one or a few annotated 2D slices or 3D sequence segments.
Our proposed MSF module mines comprehensive and diversified correlations between unlabeled and the few labeled slices/sequences through multiple designated surrogates.
arXiv Detail & Related papers (2024-08-26T17:15:37Z) - Label-Efficient 3D Brain Segmentation via Complementary 2D Diffusion Models with Orthogonal Views [10.944692719150071]
We propose a novel 3D brain segmentation approach using complementary 2D diffusion models.
Our goal is to achieve reliable segmentation quality without requiring complete labels for each individual subject.
arXiv Detail & Related papers (2024-07-17T06:14:53Z) - 3D Vascular Segmentation Supervised by 2D Annotation of Maximum
Intensity Projection [33.34240545722551]
Vascular structure segmentation plays a crucial role in medical analysis and clinical applications.
Existing weakly supervised methods have exhibited suboptimal performance when handling sparse vascular structure.
Here, we employ maximum intensity projection (MIP) to decrease the dimensionality of 3D volume to 2D image for efficient annotation.
We introduce a weakly-supervised network that fuses 2D-3D deep features via MIP to further improve segmentation performance.
arXiv Detail & Related papers (2024-02-19T13:24:46Z) - 3D Medical Image Segmentation with Sparse Annotation via Cross-Teaching
between 3D and 2D Networks [26.29122638813974]
We propose a framework that can robustly learn from sparse annotation using the cross-teaching of both 3D and 2D networks.
Our experimental results on the MMWHS dataset demonstrate that our method outperforms the state-of-the-art (SOTA) semi-supervised segmentation methods.
arXiv Detail & Related papers (2023-07-30T15:26:17Z) - Orthogonal Annotation Benefits Barely-supervised Medical Image
Segmentation [24.506059129303424]
Recent trends in semi-supervised learning have boosted the performance of 3D semi-supervised medical image segmentation.
These views and the intrinsic similarity among adjacent 3D slices inspire us to develop a novel annotation way.
We propose a dual-network paradigm named Dense-Sparse Co-training (DeSCO) that exploits dense pseudo labels in early stage and sparse labels in later stage.
arXiv Detail & Related papers (2023-03-23T08:10:25Z) - Image Understands Point Cloud: Weakly Supervised 3D Semantic
Segmentation via Association Learning [59.64695628433855]
We propose a novel cross-modality weakly supervised method for 3D segmentation, incorporating complementary information from unlabeled images.
Basically, we design a dual-branch network equipped with an active labeling strategy, to maximize the power of tiny parts of labels.
Our method even outperforms the state-of-the-art fully supervised competitors with less than 1% actively selected annotations.
arXiv Detail & Related papers (2022-09-16T07:59:04Z) - Collaborative Propagation on Multiple Instance Graphs for 3D Instance
Segmentation with Single-point Supervision [63.429704654271475]
We propose a novel weakly supervised method RWSeg that only requires labeling one object with one point.
With these sparse weak labels, we introduce a unified framework with two branches to propagate semantic and instance information.
Specifically, we propose a Cross-graph Competing Random Walks (CRW) algorithm that encourages competition among different instance graphs.
arXiv Detail & Related papers (2022-08-10T02:14:39Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.