Adaptive Long-term Embedding with Denoising and Augmentation for Recommendation
- URL: http://arxiv.org/abs/2504.13614v1
- Date: Fri, 18 Apr 2025 10:42:16 GMT
- Title: Adaptive Long-term Embedding with Denoising and Augmentation for Recommendation
- Authors: Zahra Akhlaghi, Mostafa Haghir Chehreghani,
- Abstract summary: We introduce the Adaptive Long-term Embedding with Denoising and Augmentation for Recommendation (ALDA4Rec) method.<n>ALDA4Rec is a novel model that constructs an item-item graph, filters noise through community detection, and enriches user-item interactions.<n>Experiments conducted on four real-world datasets demonstrate that ALDA4Rec outperforms state-of-the-art baselines.
- Score: 1.0128808054306186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid growth of the internet has made personalized recommendation systems indispensable. Graph-based sequential recommendation systems, powered by Graph Neural Networks (GNNs), effectively capture complex user-item interactions but often face challenges such as noise and static representations. In this paper, we introduce the Adaptive Long-term Embedding with Denoising and Augmentation for Recommendation (ALDA4Rec) method, a novel model that constructs an item-item graph, filters noise through community detection, and enriches user-item interactions. Graph Convolutional Networks (GCNs) are then employed to learn short-term representations, while averaging, GRUs, and attention mechanisms are utilized to model long-term embeddings. An MLP-based adaptive weighting strategy is further incorporated to dynamically optimize long-term user preferences. Experiments conducted on four real-world datasets demonstrate that ALDA4Rec outperforms state-of-the-art baselines, delivering notable improvements in both accuracy and robustness. The source code is available at https://github.com/zahraakhlaghi/ALDA4Rec.
Related papers
- Rolling Forward: Enhancing LightGCN with Causal Graph Convolution for Credit Bond Recommendation [16.015835475954773]
We introduce a novel extension to Light Graph Convolutional Network (LightGCN) designed to learn temporal node embeddings that capture dynamic interests.<n>Our approach employs causal convolution to maintain a forward-looking model architecture.<n>Our findings provide new insights into designing graph-based recommender systems in time-sensitive applications.
arXiv Detail & Related papers (2025-03-18T12:47:01Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - SelfGNN: Self-Supervised Graph Neural Networks for Sequential Recommendation [15.977789295203976]
We propose a novel framework called Self-Supervised Graph Neural Network (SelfGNN) for sequential recommendation.
The SelfGNN framework encodes short-term graphs based on time intervals and utilizes Graph Neural Networks (GNNs) to learn short-term collaborative relationships.
Our personalized self-augmented learning structure enhances model robustness by mitigating noise in short-term graphs based on long-term user interests and personal stability.
arXiv Detail & Related papers (2024-05-31T14:53:12Z) - Linear-Time Graph Neural Networks for Scalable Recommendations [50.45612795600707]
The key of recommender systems is to forecast users' future behaviors based on previous user-item interactions.
Recent years have witnessed a rising interest in leveraging Graph Neural Networks (GNNs) to boost the prediction performance of recommender systems.
We propose a Linear-Time Graph Neural Network (LTGNN) to scale up GNN-based recommender systems to achieve comparable scalability as classic MF approaches.
arXiv Detail & Related papers (2024-02-21T17:58:10Z) - GraphPro: Graph Pre-training and Prompt Learning for Recommendation [18.962982290136935]
GraphPro is a framework that incorporates parameter-efficient and dynamic graph pre-training with prompt learning.
Our framework addresses the challenge of evolving user preferences by seamlessly integrating a temporal prompt mechanism and a graph-structural prompt learning mechanism.
arXiv Detail & Related papers (2023-11-28T12:00:06Z) - APGL4SR: A Generic Framework with Adaptive and Personalized Global
Collaborative Information in Sequential Recommendation [86.29366168836141]
We propose a graph-driven framework, named Adaptive and Personalized Graph Learning for Sequential Recommendation (APGL4SR)
APGL4SR incorporates adaptive and personalized global collaborative information into sequential recommendation systems.
As a generic framework, APGL4SR can outperform other baselines with significant margins.
arXiv Detail & Related papers (2023-11-06T01:33:24Z) - Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI) recommendation has become a prominent component in location-based e-commerce.
We propose a Self-supervised Graph-enhanced POI Recommender (S2GRec) for next POI recommendation.
In particular, we devise a novel Graph-enhanced Self-attentive layer to incorporate the collaborative signals from both global transition graph and local trajectory graphs.
arXiv Detail & Related papers (2022-10-22T17:29:34Z) - Reinforcement Learning based Path Exploration for Sequential Explainable
Recommendation [57.67616822888859]
We propose a novel Temporal Meta-path Guided Explainable Recommendation leveraging Reinforcement Learning (TMER-RL)
TMER-RL utilizes reinforcement item-item path modelling between consecutive items with attention mechanisms to sequentially model dynamic user-item evolutions on dynamic knowledge graph for explainable recommendation.
Extensive evaluations of TMER on two real-world datasets show state-of-the-art performance compared against recent strong baselines.
arXiv Detail & Related papers (2021-11-24T04:34:26Z) - Causal Incremental Graph Convolution for Recommender System Retraining [89.25922726558875]
Real-world recommender system needs to be regularly retrained to keep with the new data.
In this work, we consider how to efficiently retrain graph convolution network (GCN) based recommender models.
arXiv Detail & Related papers (2021-08-16T04:20:09Z) - UBER-GNN: A User-Based Embeddings Recommendation based on Graph Neural
Networks [27.485553372163732]
We propose User-Based Embeddings Recommendation with Graph Neural Network, UBER-GNN for brevity.
UBER-GNN takes advantage of structured data to generate longterm user preferences, and transfers session sequences into graphs to generate graph-based dynamic interests.
Experiments conducted on real Ping An scenario show that UBER-GNN outperforms the state-of-the-art session-based recommendation methods.
arXiv Detail & Related papers (2020-08-06T09:54:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.