論文の概要: Thought Manipulation: External Thought Can Be Efficient for Large Reasoning Models
- arxiv url: http://arxiv.org/abs/2504.13626v2
- Date: Mon, 04 Aug 2025 12:34:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 20:32:48.597362
- Title: Thought Manipulation: External Thought Can Be Efficient for Large Reasoning Models
- Title(参考訳): 思考操作:外部思考は大きな推論モデルに有効である
- Authors: Yule Liu, Jingyi Zheng, Zhen Sun, Zifan Peng, Wenhan Dong, Zeyang Sha, Shiwen Cui, Weiqiang Wang, Xinlei He,
- Abstract要約: 大規模推論モデル(LRM)は、しばしば過度に冗長な推論ステップを生成し、性能の向上が制限されるという過大な問題に悩まされる。
本研究では, LRMが不要な中間ステップを回避し, 計算コストを大幅に削減できる簡易で効率的なパイプライン, Methodを提案する。
- 参考スコア(独自算出の注目度): 32.49420948390984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in large reasoning models (LRMs) have demonstrated the effectiveness of scaling test-time computation to enhance reasoning capabilities on various tasks. However, LRMs often suffer from an ``overthinking'' problem, where the model generates excessively redundant reasoning steps with limited performance gains. In this work, we empirically reveal an important characteristic of LRM behaviors that placing external CoTs generated by smaller models between the thinking token (\texttt{<think>} and \texttt{</think>}) can effectively manipulate the model to generate fewer thoughts. Building on this finding, we propose a simple yet efficient pipeline, \Method, to enable LRMs to bypass unnecessary intermediate steps, thereby significantly reducing computational costs. We conduct extensive experiments to evaluate the utility and efficiency of \Method. For instance, when applied to QwQ-32B on the LiveBench/Code dataset, \Method keeps the original performance while reducing output token counts by approximately 30\%, with minimal overhead introduced by the CoT generator. Furthermore, we identify two suboptimal modes, blindly following flawed external thoughts and unnecessary rethinking, and show that simple mitigations, such as difficulty-aware fallbacks, can further improve performance. Overall, \Method offers a practical, general, and efficient way to optimize LRM inference, making powerful reasoning models more accessible and scalable for real-world applications.
- Abstract(参考訳): 大規模推論モデル(LRM)の最近の進歩は、様々なタスクにおける推論能力を高めるために、テスト時間計算のスケーリングの有効性を実証している。
しかし、LRMは「過剰思考」の問題に悩まされることが多く、そこではモデルが性能が制限された過剰に冗長な推論ステップを生成する。
本研究では,思考トークン (\texttt{<think>} と \texttt{</think>}) の間に小さなモデルから生成された外部CoTを配置することで,モデルを効果的に操作し,より少ない思考を生成するという,LRM行動の重要な特徴を実証的に明らかにする。
この発見に基づいて, LRMが不要な中間ステップを回避し, 計算コストを大幅に削減する, 単純で効率的なパイプラインである \Method を提案する。
我々は,<Method>の有用性と効率を評価するため,広範囲な実験を行った。
例えば、LiveBench/CodeデータセットのQwQ-32Bに適用されると、 \Methodは、CoTジェネレータによって最小限のオーバーヘッドで、出力トークン数を約30%削減しながら、元のパフォーマンスを維持します。
さらに、欠陥のある外的思考と不必要な再考に盲目的に追従する2つの準最適モードを同定し、難易度を考慮したフォールバックのような単純な緩和がパフォーマンスをさらに向上させることを示す。
全体として、 \Method は LRM 推論を最適化するための実用的で汎用的で効率的な方法を提供する。
関連論文リスト
- Is Long-to-Short a Free Lunch? Investigating Inconsistency and Reasoning Efficiency in LRMs [8.359909829007005]
大規模推論モデル(LRM)において,効率的な推論手法が行動の不整合をもたらすかどうかを検討する。
$ICBENCH$は、3次元にわたるLRMの不整合を測定するために設計されたベンチマークである。
より大きなモデルは一般的に小さなモデルよりも一貫性が高いが、すべてのモデルが広く「計画的」な振る舞いを示す。
論文 参考訳(メタデータ) (2025-06-24T10:25:28Z) - Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement [101.77467538102924]
大きな推論モデル(LRM)は、効率を阻害し、推論コストを膨らませる過剰な考えを示す。
LRM効率を向上させるための2つの軽量手法を提案する。
まず,学習不要なアクティベーションステアリング技術であるEfficic Steeringを導入する。
第2に,タスクの正確さと簡潔さを動的にバランスする強化学習フレームワークである自己回帰効率RLを開発する。
論文 参考訳(メタデータ) (2025-06-18T17:18:12Z) - THINK-Bench: Evaluating Thinking Efficiency and Chain-of-Thought Quality of Large Reasoning Models [17.609493312457]
大きな推論モデル(LRM)は複雑なタスクにおいて顕著なパフォーマンスを達成しており、しばしば従来の大言語モデル(LLM)よりも優れています。
再考は計算効率を著しく制限する。
LRMの推論効率を評価するためのベンチマークであるThink-Benchを紹介する。
論文 参考訳(メタデータ) (2025-05-28T08:41:14Z) - Self-Route: Automatic Mode Switching via Capability Estimation for Efficient Reasoning [36.470695895695044]
Self-Routeは、一般的な推論モードと推論モードを自動的に選択する動的推論フレームワークである。
トークン消費量を30~55%削減しながら,自己ルートが推論モデルに匹敵する精度を実現していることを示す。
論文 参考訳(メタデータ) (2025-05-27T03:18:31Z) - Let LLMs Break Free from Overthinking via Self-Braking Tuning [60.08396797526657]
大きな推論モデル(LRM)は思考の長い連鎖を生成することによって推論能力を著しく向上させた。
この性能向上は、生成プロセス中の冗長な推論を大幅に増加させるコストが伴う。
本稿では、モデルが独自の推論プロセスを制御することを許容する観点から、過度に検討する新しいフレームワーク、Self-Braking Tuning(SBT)を提案する。
論文 参考訳(メタデータ) (2025-05-20T16:53:40Z) - Scalable Chain of Thoughts via Elastic Reasoning [61.75753924952059]
Elastic Reasoningは、スケーラブルな思考の連鎖のための新しいフレームワークである。
推論は、独立して割り当てられた予算で、思考と解決の2つのフェーズに分けられる。
我々のアプローチは、制約のない設定でもより簡潔で効率的な推論をもたらす。
論文 参考訳(メタデータ) (2025-05-08T15:01:06Z) - Trade-offs in Large Reasoning Models: An Empirical Analysis of Deliberative and Adaptive Reasoning over Foundational Capabilities [101.77467538102924]
近年のLRM(Large Reasoning Models)の進歩は、特殊推論タスクにおいて顕著な性能を示している。
議論的推論能力の獲得は, LRMの基礎的能力を大幅に低下させることを示す。
適応推論(Zero-Thinking, Less-Thinking, Summary-Thinking)がこれらの欠点を効果的に軽減できることを示します。
論文 参考訳(メタデータ) (2025-03-23T08:18:51Z) - START: Self-taught Reasoner with Tools [51.38785489790888]
ツール統合長チェーン・オブ・シークレット(CoT)推論LSMであるSTART(Self-Taught Reasoner with Tools)を紹介する。
STARTは複雑な計算、自己チェック、多様な方法の探索、そして自己老化を行うことができる。
基礎となるQwQ-32Bを著しく上回り、最先端のオープンウェイトモデルR1-Distill-Qwen-32Bに匹敵する性能を達成する。
論文 参考訳(メタデータ) (2025-03-06T17:11:51Z) - Scalable Best-of-N Selection for Large Language Models via Self-Certainty [65.31658824274894]
Best-of-N選択は、大規模言語モデルの推論性能を改善するための重要なテクニックである。
本稿では,外部報酬モデルを必要とすることなく,応答品質を推定する新規かつ効率的な指標である自己確実性を提案する。
本研究は, LLM推論能力を向上させるための実用的で効率的な方法として, 自己確実性を確立した。
論文 参考訳(メタデータ) (2025-02-25T19:08:07Z) - Towards Thinking-Optimal Scaling of Test-Time Compute for LLM Reasoning [113.49074603075032]
近年の研究では、モデルをより長い思考の連鎖(CoTs)を通して考える時間を増やすことで、複雑な推論タスクにおいて大幅な改善が得られることが示されている。
より長いCoTによるスケーリングが、特定のドメインにおけるLarge Language Model(LLM)の推論性能を損なうかどうかを考察する。
論文 参考訳(メタデータ) (2025-02-25T10:48:05Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs [76.43407125275202]
o1のようなモデルは、推論中に人間のような長時間の思考をエミュレートすることができる。
本論文は,これらのモデルにおける過度な考察の課題に関する,最初の包括的研究である。
精度を損なうことなく、過剰思考を緩和し、推論プロセスを合理化するための戦略を提案する。
論文 参考訳(メタデータ) (2024-12-30T18:55:12Z) - Rational Metareasoning for Large Language Models [5.5539136805232205]
大きな言語モデル(LLM)を使用するためのコアテクニックとして,推論への関与を促す声が上がっている。
本研究は,認知科学で用いられるメタレゾニングの計算モデルに基づく新しいアプローチを導入する。
我々は不必要な推論を罰することで計算の価値を組み込む報酬関数を開発する。
論文 参考訳(メタデータ) (2024-10-07T23:48:52Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
我々はtextttMEX というオンライン強化学習(オンラインRL)フレームワークを提案する。
textttMEXは、自動的に探索エクスプロイトのバランスをとりながら、見積もりと計画コンポーネントを統合する。
様々な MuJoCo 環境では,ベースラインを安定的なマージンで上回り,十分な報酬を得られる。
論文 参考訳(メタデータ) (2023-05-29T17:25:26Z) - ReWOO: Decoupling Reasoning from Observations for Efficient Augmented
Language Models [32.95155349925248]
本稿では,外部観測から推論プロセスを取り除き,トークン消費量を大幅に削減するモジュラーパラダイムReWOOを提案する。
マルチステップ推論ベンチマークであるHotpotQAにおいて,ReWOOは5倍のトークン効率と4%の精度向上を実現している。
本稿では,175B GPT3.5から7B LLaMAへの推論能力をオフロードし,真に効率的でスケーラブルなALMシステムの可能性を示す。
論文 参考訳(メタデータ) (2023-05-23T00:16:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。