Efficient Parameter Adaptation for Multi-Modal Medical Image Segmentation and Prognosis
- URL: http://arxiv.org/abs/2504.13645v1
- Date: Fri, 18 Apr 2025 11:52:21 GMT
- Title: Efficient Parameter Adaptation for Multi-Modal Medical Image Segmentation and Prognosis
- Authors: Numan Saeed, Shahad Hardan, Muhammad Ridzuan, Nada Saadi, Karthik Nandakumar, Mohammad Yaqub,
- Abstract summary: We propose a parameter-efficient multi-modal adaptation (PEMMA) framework for lightweight upgrading of a transformer-based segmentation model.<n>Our method achieves comparable performance to early fusion, but with only 8% of the trainable parameters, and demonstrates a significant +28% Dice score improvement on PET scans when trained with a single modality.
- Score: 4.5445892770974154
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cancer detection and prognosis relies heavily on medical imaging, particularly CT and PET scans. Deep Neural Networks (DNNs) have shown promise in tumor segmentation by fusing information from these modalities. However, a critical bottleneck exists: the dependency on CT-PET data concurrently for training and inference, posing a challenge due to the limited availability of PET scans. Hence, there is a clear need for a flexible and efficient framework that can be trained with the widely available CT scans and can be still adapted for PET scans when they become available. In this work, we propose a parameter-efficient multi-modal adaptation (PEMMA) framework for lightweight upgrading of a transformer-based segmentation model trained only on CT scans such that it can be efficiently adapted for use with PET scans when they become available. This framework is further extended to perform prognosis task maintaining the same efficient cross-modal fine-tuning approach. The proposed approach is tested with two well-known segementation backbones, namely UNETR and Swin UNETR. Our approach offers two main advantages. Firstly, we leverage the inherent modularity of the transformer architecture and perform low-rank adaptation (LoRA) as well as decomposed low-rank adaptation (DoRA) of the attention weights to achieve parameter-efficient adaptation. Secondly, by minimizing cross-modal entanglement, PEMMA allows updates using only one modality without causing catastrophic forgetting in the other. Our method achieves comparable performance to early fusion, but with only 8% of the trainable parameters, and demonstrates a significant +28% Dice score improvement on PET scans when trained with a single modality. Furthermore, in prognosis, our method improves the concordance index by +10% when adapting a CT-pretrained model to include PET scans, and by +23% when adapting for both PET and EHR data.
Related papers
- Parameter Efficient Fine Tuning for Multi-scanner PET to PET Reconstruction [3.74142789780782]
Motivated by the potential of.
Efficient Fine-Tuning (PEFT), we aim to address issues by effectively leveraging PEFT to improve limited data.
In this paper, we introduce PETITE,.
Efficient Fine-Tuning for MultI-scanner PET to PET REconstruction that uses fewer than 1% of the parameters.
arXiv Detail & Related papers (2024-07-10T10:12:26Z) - Multi-modal Evidential Fusion Network for Trustworthy PET/CT Tumor Segmentation [5.839660501978193]
In clinical settings, the quality of PET and CT images often varies significantly, leading to uncertainty in the modality information extracted by networks.<n>We propose a novel Multi-modal Evidential Fusion Network (MEFN), which consists of two core stages: Cross-Modal Feature Learning (CFL) and Multi-modal Trustworthy Fusion (MTF)<n>Our model can provide radiologists with credible uncertainty of the segmentation results for their decision in accepting or rejecting the automatic segmentation results.
arXiv Detail & Related papers (2024-06-26T13:14:24Z) - PEMMA: Parameter-Efficient Multi-Modal Adaptation for Medical Image Segmentation [5.056996354878645]
When both CT and PET scans are available, it is common to combine them as two channels of the input to the segmentation model.
This method requires both scan types during training and inference, posing a challenge due to the limited availability of PET scans.
We propose a parameter-efficient multi-modal adaptation framework for lightweight upgrading of a transformer-based segmentation model.
arXiv Detail & Related papers (2024-04-21T16:29:49Z) - Revolutionizing Disease Diagnosis with simultaneous functional PET/MR and Deeply Integrated Brain Metabolic, Hemodynamic, and Perfusion Networks [40.986069119392944]
We propose MX-ARM, a multimodal MiXture-of-experts Alignment Reconstruction and Model.
It is modality detachable and exchangeable, allocating different multi-layer perceptrons dynamically ("mixture of experts") through learnable weights to learn respective representations from different modalities.
arXiv Detail & Related papers (2024-03-29T08:47:49Z) - ConPET: Continual Parameter-Efficient Tuning for Large Language Models [65.48107393731861]
Continual learning requires continual adaptation of models to newly emerging tasks.
We propose Continual.
Efficient Tuning (ConPET), a generalizable paradigm for.
continual task adaptation of large language models.
arXiv Detail & Related papers (2023-09-26T08:52:04Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
We present a novel approach for unpaired image-to-image translation of prostate MRIs and an uncertainty-aware training approach for classifying clinically significant PCa.
Our approach involves a novel pipeline for translating unpaired 3.0T multi-parametric prostate MRIs to 1.5T, thereby augmenting the available training data.
Our experiments demonstrate that the proposed method significantly improves the Area Under ROC Curve (AUC) by over 20% compared to the previous work.
arXiv Detail & Related papers (2023-07-02T05:26:54Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - Exploring the Impact of Model Scaling on Parameter-Efficient Tuning [100.61202305296275]
Scaling-efficient tuning (PET) methods can effectively drive extremely large pre-trained language models (PLMs)
In small PLMs, there are usually noticeable performance differences among PET methods.
We introduce a more flexible PET method called Arbitrary PET (APET) method.
arXiv Detail & Related papers (2023-06-04T10:10:54Z) - A Unified Continual Learning Framework with General Parameter-Efficient
Tuning [56.250772378174446]
"Pre-training $rightarrow$ downstream adaptation" presents both new opportunities and challenges for Continual Learning.
We position prompting as one instantiation of PET, and propose a unified CL framework, dubbed as Learning-Accumulation-Ensemble (LAE)
PET, e.g., using Adapter, LoRA, or Prefix, can adapt a pre-trained model to downstream tasks with fewer parameters and resources.
arXiv Detail & Related papers (2023-03-17T15:52:45Z) - Improved automated lesion segmentation in whole-body FDG/PET-CT via
Test-Time Augmentation [5.206955554317389]
Oncology indications have extensively quantified metabolically active tumors using positron emission tomography (PET) and computed tomography (CT)
In this study, we investigate the potential benefits of test-time augmentation for segmenting tumors from PET-CT pairings.
We train U-Net and Swin U-Netr on the training database to determine how different test time augmentation improved segmentation performance.
arXiv Detail & Related papers (2022-10-14T12:50:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.