Enhancing Pothole Detection and Characterization: Integrated Segmentation and Depth Estimation in Road Anomaly Systems
- URL: http://arxiv.org/abs/2504.13648v1
- Date: Fri, 18 Apr 2025 11:59:38 GMT
- Title: Enhancing Pothole Detection and Characterization: Integrated Segmentation and Depth Estimation in Road Anomaly Systems
- Authors: Uthman Baroudi, Alala BaHamid, Yasser Elalfy, Ziad Al Alami,
- Abstract summary: Road anomaly detection plays a crucial role in road maintenance and in enhancing the safety of both drivers and vehicles.<n>Recent machine learning approaches for road anomaly detection have overcome the tedious and time-consuming process of manual analysis and anomaly counting.<n>In this paper, we leverage transfer learning by adopting a pre-trained YOLOv8-seg model for the automatic characterization of potholes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Road anomaly detection plays a crucial role in road maintenance and in enhancing the safety of both drivers and vehicles. Recent machine learning approaches for road anomaly detection have overcome the tedious and time-consuming process of manual analysis and anomaly counting; however, they often fall short in providing a complete characterization of road potholes. In this paper, we leverage transfer learning by adopting a pre-trained YOLOv8-seg model for the automatic characterization of potholes using digital images captured from a dashboard-mounted camera. Our work includes the creation of a novel dataset, comprising both images and their corresponding depth maps, collected from diverse road environments in Al-Khobar city and the KFUPM campus in Saudi Arabia. Our approach performs pothole detection and segmentation to precisely localize potholes and calculate their area. Subsequently, the segmented image is merged with its depth map to extract detailed depth information about the potholes. This integration of segmentation and depth data offers a more comprehensive characterization compared to previous deep learning-based road anomaly detection systems. Overall, this method not only has the potential to significantly enhance autonomous vehicle navigation by improving the detection and characterization of road hazards but also assists road maintenance authorities in responding more effectively to road damage.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Enhancing Roadway Safety: LiDAR-based Tree Clearance Analysis [0.2877502288155167]
Trees or other vegetation is growing above roadways, blocking the sight of traffic signs and lights and posing danger to traffic participants.
This is where LiDAR technology comes into play, a laser scanning sensor that reveals a three-dimensional perspective.
We present a new point cloud algorithm that can automatically detect those parts of the trees that grow over the street and need to be trimmed.
arXiv Detail & Related papers (2024-02-28T13:08:46Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
Road surface reconstruction helps to enhance the analysis and prediction of vehicle responses for motion planning and control systems.
We introduce the Road Surface Reconstruction dataset, a real-world, high-resolution, and high-precision dataset collected with a specialized platform in diverse driving conditions.
It covers common road types containing approximately 16,000 pairs of stereo images, original point clouds, and ground-truth depth/disparity maps.
arXiv Detail & Related papers (2023-10-03T17:59:32Z) - RoadScan: A Novel and Robust Transfer Learning Framework for Autonomous
Pothole Detection in Roads [0.0]
This research paper presents a novel approach to pothole detection using Deep Learning and Image Processing techniques.
The system aims to address the critical issue of potholes on roads, which pose significant risks to road users.
arXiv Detail & Related papers (2023-08-07T10:47:08Z) - Deep Learning Approaches in Pavement Distress Identification: A Review [0.39373541926236766]
This paper reviews recent advancements in image processing and deep learning techniques for pavement distress detection and classification.
The ability of these algorithms to discern patterns and make predictions based on extensive datasets has revolutionized the domain of pavement distress identification.
By capturing high-resolution images, UAVs provide valuable data that can be processed using deep learning algorithms to detect and classify various pavement distresses effectively.
arXiv Detail & Related papers (2023-08-01T20:30:11Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Perspective Aware Road Obstacle Detection [104.57322421897769]
We show that road obstacle detection techniques ignore the fact that, in practice, the apparent size of the obstacles decreases as their distance to the vehicle increases.
We leverage this by computing a scale map encoding the apparent size of a hypothetical object at every image location.
We then leverage this perspective map to generate training data by injecting onto the road synthetic objects whose size corresponds to the perspective foreshortening.
arXiv Detail & Related papers (2022-10-04T17:48:42Z) - Haul Road Mapping from GPS Traces [0.0]
This paper investigates the possibility of automatically deriving an accurate representation of the road network using GPS data available from haul trucks operating on site.
Based on shortcomings seen in all tested algorithms, a post-processing step is developed which geometrically analyses the created road map for artefacts typical of free-drive areas on mine sites.
arXiv Detail & Related papers (2022-06-27T04:35:06Z) - BoMuDANet: Unsupervised Adaptation for Visual Scene Understanding in
Unstructured Driving Environments [54.22535063244038]
We present an unsupervised adaptation approach for visual scene understanding in unstructured traffic environments.
Our method is designed for unstructured real-world scenarios with dense and heterogeneous traffic consisting of cars, trucks, two-and three-wheelers, and pedestrians.
arXiv Detail & Related papers (2020-09-22T08:25:44Z) - We Learn Better Road Pothole Detection: from Attention Aggregation to
Adversarial Domain Adaptation [22.076261078410752]
Road pothole detection results are always subjective, because they depend entirely on the individual experience.
Our recently introduced disparity (or inverse depth) transformation algorithm allows better discrimination between damaged and undamaged road areas.
We propose a novel attention aggregation (AA) framework, which takes the advantages of different types of attention modules.
arXiv Detail & Related papers (2020-08-16T05:17:42Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
We propose a robust method for estimating road curb 3D parameters using a calibrated monocular camera equipped with a fisheye lens.
Our approach is able to estimate the vehicle to curb distance in real time with mean accuracy of more than 90%.
arXiv Detail & Related papers (2020-02-28T00:24:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.