OpenDeception: Benchmarking and Investigating AI Deceptive Behaviors via Open-ended Interaction Simulation
- URL: http://arxiv.org/abs/2504.13707v1
- Date: Fri, 18 Apr 2025 14:11:27 GMT
- Title: OpenDeception: Benchmarking and Investigating AI Deceptive Behaviors via Open-ended Interaction Simulation
- Authors: Yichen Wu, Xudong Pan, Geng Hong, Min Yang,
- Abstract summary: We introduce OpenDeception, a novel deception evaluation framework with an open-ended scenario dataset.<n>OpenDeception jointly evaluates both the deception intention and capabilities of LLM-based agents by inspecting their internal reasoning process.<n>To avoid ethical concerns and costs of high-risk deceptive interactions with human testers, we propose to simulate the multi-turn dialogue via agent simulation.
- Score: 23.204532296472834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the general capabilities of large language models (LLMs) improve and agent applications become more widespread, the underlying deception risks urgently require systematic evaluation and effective oversight. Unlike existing evaluation which uses simulated games or presents limited choices, we introduce OpenDeception, a novel deception evaluation framework with an open-ended scenario dataset. OpenDeception jointly evaluates both the deception intention and capabilities of LLM-based agents by inspecting their internal reasoning process. Specifically, we construct five types of common use cases where LLMs intensively interact with the user, each consisting of ten diverse, concrete scenarios from the real world. To avoid ethical concerns and costs of high-risk deceptive interactions with human testers, we propose to simulate the multi-turn dialogue via agent simulation. Extensive evaluation of eleven mainstream LLMs on OpenDeception highlights the urgent need to address deception risks and security concerns in LLM-based agents: the deception intention ratio across the models exceeds 80%, while the deception success rate surpasses 50%. Furthermore, we observe that LLMs with stronger capabilities do exhibit a higher risk of deception, which calls for more alignment efforts on inhibiting deceptive behaviors.
Related papers
- SafeMLRM: Demystifying Safety in Multi-modal Large Reasoning Models [50.34706204154244]
Acquiring reasoning capabilities catastrophically degrades inherited safety alignment.
Certain scenarios suffer 25 times higher attack rates.
Despite tight reasoning-answer safety coupling, MLRMs demonstrate nascent self-correction.
arXiv Detail & Related papers (2025-04-09T06:53:23Z) - Effectively Controlling Reasoning Models through Thinking Intervention [38.77100471547442]
Reasoning-enhanced large language models explicitly generate intermediate reasoning steps prior to generating final answers.<n>This emerging generation framework offers a unique opportunity for more fine-grained control over model behavior.<n>We propose Thinking Intervention, a novel paradigm designed to explicitly guide the internal reasoning processes of LLMs.
arXiv Detail & Related papers (2025-03-31T17:50:13Z) - Prompt Inversion Attack against Collaborative Inference of Large Language Models [14.786666134508645]
We introduce the concept of prompt inversion attack (PIA), where a malicious participant intends to recover the input prompt through the activation transmitted by its previous participant.<n>Our method achieves an 88.4% token accuracy on the Skytrax dataset with the Llama-65B model when inverting the maximum number of transformer layers.
arXiv Detail & Related papers (2025-03-12T03:20:03Z) - Evaluating Cultural and Social Awareness of LLM Web Agents [113.49968423990616]
We introduce CASA, a benchmark designed to assess large language models' sensitivity to cultural and social norms.
Our approach evaluates LLM agents' ability to detect and appropriately respond to norm-violating user queries and observations.
Experiments show that current LLMs perform significantly better in non-agent environments.
arXiv Detail & Related papers (2024-10-30T17:35:44Z) - Preemptive Detection and Correction of Misaligned Actions in LLM Agents [70.54226917774933]
InferAct is a novel approach to detect misaligned actions before execution.<n>It alerts users for timely correction, preventing adverse outcomes.<n>InferAct achieves up to 20% improvements on Marco-F1 against baselines in misaligned action detection.
arXiv Detail & Related papers (2024-07-16T15:24:44Z) - Assessing the Effectiveness of LLMs in Android Application Vulnerability Analysis [0.0]
This study compares the ability of nine large language models (LLMs) to detect Android code vulnerabilities listed in the latest Open Worldwide Application Security Project (OWASP) Mobile Top 10.
Our analysis reveals the strengths and weaknesses of each LLM, identifying important factors that contribute to their performance.
arXiv Detail & Related papers (2024-06-27T05:14:34Z) - MultiTrust: A Comprehensive Benchmark Towards Trustworthy Multimodal Large Language Models [51.19622266249408]
MultiTrust is the first comprehensive and unified benchmark on the trustworthiness of MLLMs.<n>Our benchmark employs a rigorous evaluation strategy that addresses both multimodal risks and cross-modal impacts.<n>Extensive experiments with 21 modern MLLMs reveal some previously unexplored trustworthiness issues and risks.
arXiv Detail & Related papers (2024-06-11T08:38:13Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents [74.16170899755281]
We introduce AgentBoard, a pioneering comprehensive benchmark and accompanied open-source evaluation framework tailored to analytical evaluation of LLM agents.<n>AgentBoard offers a fine-grained progress rate metric that captures incremental advancements as well as a comprehensive evaluation toolkit.<n>This not only sheds light on the capabilities and limitations of LLM agents but also propels the interpretability of their performance to the forefront.
arXiv Detail & Related papers (2024-01-24T01:51:00Z) - R-Judge: Benchmarking Safety Risk Awareness for LLM Agents [28.0550468465181]
Large language models (LLMs) have exhibited great potential in autonomously completing tasks across real-world applications.
This work addresses the imperative need for benchmarking the behavioral safety of LLM agents within diverse environments.
We introduce R-Judge, a benchmark crafted to evaluate the proficiency of LLMs in judging and identifying safety risks given agent interaction records.
arXiv Detail & Related papers (2024-01-18T14:40:46Z) - How Trustworthy are Open-Source LLMs? An Assessment under Malicious Demonstrations Shows their Vulnerabilities [37.14654106278984]
We conduct an adversarial assessment of open-source Large Language Models (LLMs) on trustworthiness.
We propose advCoU, an extended Chain of Utterances-based (CoU) prompting strategy by incorporating carefully crafted malicious demonstrations for trustworthiness attack.
Our experiments encompass recent and representative series of open-source LLMs, including Vicuna, MPT, Falcon, Mistral, and Llama 2.
arXiv Detail & Related papers (2023-11-15T23:33:07Z) - On Evaluating Adversarial Robustness of Large Vision-Language Models [64.66104342002882]
We evaluate the robustness of large vision-language models (VLMs) in the most realistic and high-risk setting.
In particular, we first craft targeted adversarial examples against pretrained models such as CLIP and BLIP.
Black-box queries on these VLMs can further improve the effectiveness of targeted evasion.
arXiv Detail & Related papers (2023-05-26T13:49:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.