DAM-Net: Domain Adaptation Network with Micro-Labeled Fine-Tuning for Change Detection
- URL: http://arxiv.org/abs/2504.13748v1
- Date: Fri, 18 Apr 2025 15:29:57 GMT
- Title: DAM-Net: Domain Adaptation Network with Micro-Labeled Fine-Tuning for Change Detection
- Authors: Hongjia Chen, Xin Xu, Fangling Pu,
- Abstract summary: We propose DAM-Net: a Domain Adaptation Network with Micro-Labeled Fine-Tuning for CD.<n>Our network introduces adversarial domain adaptation to CD for, utilizing a specially designed segmentation-discriminator and alternating training strategy.<n>Our approach significantly advances cross-dataset CD applications and provides a new paradigm for efficient domain adaptation in remote sensing.
- Score: 9.682463974799893
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Change detection (CD) in remote sensing imagery plays a crucial role in various applications such as urban planning, damage assessment, and resource management. While deep learning approaches have significantly advanced CD performance, current methods suffer from poor domain adaptability, requiring extensive labeled data for retraining when applied to new scenarios. This limitation severely restricts their practical applications across different datasets. In this work, we propose DAM-Net: a Domain Adaptation Network with Micro-Labeled Fine-Tuning for CD. Our network introduces adversarial domain adaptation to CD for, utilizing a specially designed segmentation-discriminator and alternating training strategy to enable effective transfer between domains. Additionally, we propose a novel Micro-Labeled Fine-Tuning approach that strategically selects and labels a minimal amount of samples (less than 1%) to enhance domain adaptation. The network incorporates a Multi-Temporal Transformer for feature fusion and optimized backbone structure based on previous research. Experiments conducted on the LEVIR-CD and WHU-CD datasets demonstrate that DAM-Net significantly outperforms existing domain adaptation methods, achieving comparable performance to semi-supervised approaches that require 10% labeled data while using only 0.3% labeled samples. Our approach significantly advances cross-dataset CD applications and provides a new paradigm for efficient domain adaptation in remote sensing. The source code of DAM-Net will be made publicly available upon publication.
Related papers
- Diffusion Cross-domain Recommendation [0.0]
We propose Diffusion Cross-domain Recommendation (DiffCDR) to give high-quality outcomes to cold-start users.
We first adopt the theory of DPM and design a Diffusion Module (DIM), which generates user's embedding in target domain.
In addition, we consider the label data of the target domain and form the task-oriented loss function, which enables our DiffCDR to adapt to specific tasks.
arXiv Detail & Related papers (2024-02-03T15:14:51Z) - Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation [84.82153655786183]
We propose a novel framework called Informative Data Mining (IDM) to enable efficient one-shot domain adaptation for semantic segmentation.
IDM provides an uncertainty-based selection criterion to identify the most informative samples, which facilitates quick adaptation and reduces redundant training.
Our approach outperforms existing methods and achieves a new state-of-the-art one-shot performance of 56.7%/55.4% on the GTA5/SYNTHIA to Cityscapes adaptation tasks.
arXiv Detail & Related papers (2023-09-25T15:56:01Z) - Divide and Adapt: Active Domain Adaptation via Customized Learning [56.79144758380419]
We present Divide-and-Adapt (DiaNA), a new ADA framework that partitions the target instances into four categories with stratified transferable properties.
With a novel data subdivision protocol based on uncertainty and domainness, DiaNA can accurately recognize the most gainful samples.
Thanks to the "divideand-adapt" spirit, DiaNA can handle data with large variations of domain gap.
arXiv Detail & Related papers (2023-07-21T14:37:17Z) - Exploring Few-Shot Adaptation for Activity Recognition on Diverse Domains [46.26074225989355]
Domain adaptation is essential for activity recognition to ensure accurate and robust performance across diverse environments.
In this work, we focus on FewShot Domain Adaptation for Activity Recognition (FSDA-AR), which leverages a very small amount of labeled target videos.
We propose a new FSDA-AR using five established datasets considering the adaptation on more diverse and challenging domains.
arXiv Detail & Related papers (2023-05-15T08:01:05Z) - Multi-Prompt Alignment for Multi-Source Unsupervised Domain Adaptation [86.02485817444216]
We introduce Multi-Prompt Alignment (MPA), a simple yet efficient framework for multi-source UDA.
MPA denoises the learned prompts through an auto-encoding process and aligns them by maximizing the agreement of all the reconstructed prompts.
Experiments show that MPA achieves state-of-the-art results on three popular datasets with an impressive average accuracy of 54.1% on DomainNet.
arXiv Detail & Related papers (2022-09-30T03:40:10Z) - Exploiting Instance-based Mixed Sampling via Auxiliary Source Domain
Supervision for Domain-adaptive Action Detection [75.38704117155909]
We propose a novel domain adaptive action detection approach and a new adaptation protocol.
Self-training combined with cross-domain mixed sampling has shown remarkable performance gain in UDA context.
We name our proposed framework as domain-adaptive action instance mixing (DA-AIM)
arXiv Detail & Related papers (2022-09-28T22:03:25Z) - Unsupervised Domain Adaptation for LiDAR Panoptic Segmentation [5.745037250837124]
Unsupervised Domain Adaptation (UDA) techniques are essential to fill this domain gap.
We propose AdaptLPS, a novel UDA approach for LiDAR panoptic segmentation.
We show that AdaptLPS outperforms existing UDA approaches by up to 6.41 pp in terms of the PQ score.
arXiv Detail & Related papers (2021-09-30T17:30:43Z) - Unsupervised Domain Adaptation in LiDAR Semantic Segmentation with
Self-Supervision and Gated Adapters [13.744866002650076]
We propose an unsupervised domain adaptation framework that leverages unlabeled target domain data for self-supervision.
Experiments adapting from both real-to-real and synthetic-to-real LiDAR semantic segmentation benchmarks demonstrate the significant improvement over prior arts.
arXiv Detail & Related papers (2021-07-20T21:57:18Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z) - DSDANet: Deep Siamese Domain Adaptation Convolutional Neural Network for
Cross-domain Change Detection [44.05317423742678]
We propose a novel deep siamese domain adaptation convolutional neural network architecture for cross-domain change detection.
To the best of our knowledge, it is the first time that such a domain adaptation-based deep network is proposed for change detection.
arXiv Detail & Related papers (2020-06-16T15:00:54Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.