Multi-Prompt Alignment for Multi-Source Unsupervised Domain Adaptation
- URL: http://arxiv.org/abs/2209.15210v5
- Date: Thu, 30 May 2024 17:51:36 GMT
- Title: Multi-Prompt Alignment for Multi-Source Unsupervised Domain Adaptation
- Authors: Haoran Chen, Xintong Han, Zuxuan Wu, Yu-Gang Jiang,
- Abstract summary: We introduce Multi-Prompt Alignment (MPA), a simple yet efficient framework for multi-source UDA.
MPA denoises the learned prompts through an auto-encoding process and aligns them by maximizing the agreement of all the reconstructed prompts.
Experiments show that MPA achieves state-of-the-art results on three popular datasets with an impressive average accuracy of 54.1% on DomainNet.
- Score: 86.02485817444216
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most existing methods for unsupervised domain adaptation (UDA) rely on a shared network to extract domain-invariant features. However, when facing multiple source domains, optimizing such a network involves updating the parameters of the entire network, making it both computationally expensive and challenging, particularly when coupled with min-max objectives. Inspired by recent advances in prompt learning that adapts high-capacity models for downstream tasks in a computationally economic way, we introduce Multi-Prompt Alignment (MPA), a simple yet efficient framework for multi-source UDA. Given a source and target domain pair, MPA first trains an individual prompt to minimize the domain gap through a contrastive loss. Then, MPA denoises the learned prompts through an auto-encoding process and aligns them by maximizing the agreement of all the reconstructed prompts. Moreover, we show that the resulting subspace acquired from the auto-encoding process can easily generalize to a streamlined set of target domains, making our method more efficient for practical usage. Extensive experiments show that MPA achieves state-of-the-art results on three popular datasets with an impressive average accuracy of 54.1% on DomainNet.
Related papers
- Decoupled Training: Return of Frustratingly Easy Multi-Domain Learning [20.17925272562433]
Multi-domain learning aims to train a model with minimal average risk across multiple overlapping but non-identical domains.
We propose Decoupled Training (D-Train) as a frustratingly easy and hyper parameter-free multi-domain learning method.
D-Train is a tri-phase general-to-specific training strategy that first pre-trains on all domains to warm up a root model, then post-trains on each domain by splitting into multi-heads, and finally fine-tunes the heads by fixing the backbone.
arXiv Detail & Related papers (2023-09-19T04:06:41Z) - Adapting Self-Supervised Representations to Multi-Domain Setups [47.03992469282679]
Current state-of-the-art self-supervised approaches, are effective when trained on individual domains but show limited generalization on unseen domains.
We propose a general-purpose, lightweight Domain Disentanglement Module that can be plugged into any self-supervised encoder.
arXiv Detail & Related papers (2023-09-07T20:05:39Z) - Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation [3.367755441623275]
Multi-source unsupervised domain adaptation (MUDA) aims to transfer knowledge from related source domains to an unlabeled target domain.
We propose a novel approach called Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation (D3AAMDA)
This mechanism controls the alignment level of features between each source domain and the target domain, effectively leveraging the local advantageous feature information within the source domains.
arXiv Detail & Related papers (2023-07-26T09:40:19Z) - TDACNN: Target-domain-free Domain Adaptation Convolutional Neural
Network for Drift Compensation in Gas Sensors [6.451060076703026]
In this paper, deep learning based on a target-domain-free domain adaptation convolutional neural network (TDACNN) is proposed.
The main concept is that CNNs extract not only the domain-specific features of samples but also the domain-invariant features underlying both the source and target domains.
Experiments on two datasets drift under different settings demonstrate the superiority of TDACNN compared with several state-of-the-art methods.
arXiv Detail & Related papers (2021-10-14T16:30:17Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Multi-Source Domain Adaptation for Object Detection [52.87890831055648]
We propose a unified Faster R-CNN based framework, termed Divide-and-Merge Spindle Network (DMSN)
DMSN can simultaneously enhance domain innative and preserve discriminative power.
We develop a novel pseudo learning algorithm to approximate optimal parameters of pseudo target subset.
arXiv Detail & Related papers (2021-06-30T03:17:20Z) - Multi-path Neural Networks for On-device Multi-domain Visual
Classification [55.281139434736254]
This paper proposes a novel approach to automatically learn a multi-path network for multi-domain visual classification on mobile devices.
The proposed multi-path network is learned from neural architecture search by applying one reinforcement learning controller for each domain to select the best path in the super-network created from a MobileNetV3-like search space.
The determined multi-path model selectively shares parameters across domains in shared nodes while keeping domain-specific parameters within non-shared nodes in individual domain paths.
arXiv Detail & Related papers (2020-10-10T05:13:49Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - Mutual Learning Network for Multi-Source Domain Adaptation [73.25974539191553]
We propose a novel multi-source domain adaptation method, Mutual Learning Network for Multiple Source Domain Adaptation (ML-MSDA)
Under the framework of mutual learning, the proposed method pairs the target domain with each single source domain to train a conditional adversarial domain adaptation network as a branch network.
The proposed method outperforms the comparison methods and achieves the state-of-the-art performance.
arXiv Detail & Related papers (2020-03-29T04:31:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.