論文の概要: Feature Alignment and Representation Transfer in Knowledge Distillation for Large Language Models
- arxiv url: http://arxiv.org/abs/2504.13825v1
- Date: Fri, 18 Apr 2025 17:54:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 14:34:34.765715
- Title: Feature Alignment and Representation Transfer in Knowledge Distillation for Large Language Models
- Title(参考訳): 大規模言語モデルにおける知識蒸留における特徴アライメントと表現伝達
- Authors: Junjie Yang, Junhao Song, Xudong Han, Ziqian Bi, Tianyang Wang, Chia Xin Liang, Xinyuan Song, Yichao Zhang, Qian Niu, Benji Peng, Keyu Chen, Ming Liu,
- Abstract要約: 知識蒸留(KD)は、複雑な教師モデルからより単純な学生モデルへ知識を伝達する技術である。
注意に基づくアプローチのようなKD手法の最近の革新は、学生モデルの性能を顕著に改善した。
- 参考スコア(独自算出の注目度): 21.03175028045588
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Knowledge distillation (KD) is a technique for transferring knowledge from complex teacher models to simpler student models, significantly enhancing model efficiency and accuracy. It has demonstrated substantial advancements in various applications including image classification, object detection, language modeling, text classification, and sentiment analysis. Recent innovations in KD methods, such as attention-based approaches, block-wise logit distillation, and decoupling distillation, have notably improved student model performance. These techniques focus on stimulus complexity, attention mechanisms, and global information capture to optimize knowledge transfer. In addition, KD has proven effective in compressing large language models while preserving accuracy, reducing computational overhead, and improving inference speed. This survey synthesizes the latest literature, highlighting key findings, contributions, and future directions in knowledge distillation to provide insights for researchers and practitioners on its evolving role in artificial intelligence and machine learning.
- Abstract(参考訳): 知識蒸留(KD)は、複雑な教師モデルからより単純な学生モデルへ知識を伝達し、モデルの効率と精度を大幅に向上させる技術である。
画像分類、オブジェクト検出、言語モデリング、テキスト分類、感情分析など、様々な応用において大きな進歩を見せている。
注意に基づくアプローチ、ブロックワイドロジット蒸留、デカップリング蒸留といったKD手法の最近の革新は、学生モデルの性能を著しく向上させた。
これらの技術は、知識伝達を最適化するために、刺激の複雑さ、注意機構、グローバル情報キャプチャーに焦点を当てている。
さらに、KDは精度を保ちながら大きな言語モデルを圧縮し、計算オーバーヘッドを減らし、推論速度を改善するのに有効であることが証明されている。
この調査は、人工知能と機械学習におけるその進化的役割について研究者や実践者に洞察を提供するため、知識蒸留における重要な発見、貢献、そして今後の方向性を強調した最新の文献を合成する。
関連論文リスト
- Honey, I Shrunk the Language Model: Impact of Knowledge Distillation Methods on Performance and Explainability [3.224880576815583]
大規模言語モデルの高い計算とストレージ要求は、リソース制約のある環境への展開を制限する。
これまでの研究では, 学習データの生成と学生モデルの訓練のための蒸留法がいくつか導入されている。
その関連性にも拘わらず, 現状蒸留法がモデル性能および説明可能性に与える影響については, 十分に検討されていない。
論文 参考訳(メタデータ) (2025-04-22T17:32:48Z) - Enhancing Generative Class Incremental Learning Performance with Model Forgetting Approach [50.36650300087987]
本研究は, ジェネレーティブ・クラス・インクリメンタル・ラーニング(GCIL, Generative Class Incremental Learning)への新たなアプローチを提案する。
我々は, 忘れる機構の統合により, 新たな知識獲得におけるモデルの性能が著しく向上することを発見した。
論文 参考訳(メタデータ) (2024-03-27T05:10:38Z) - PromptKD: Distilling Student-Friendly Knowledge for Generative Language Models via Prompt Tuning [30.70974942397732]
本稿では,学生に親しみやすい知識を伝達する生成言語モデルを実現するために,PromptKDを提案する。
命令追従データセットの実験は、PromptKDが最先端のパフォーマンスを達成することを示す。
さらに分析したところ、学生に親しみやすい知識の蒸留は、トレーニングプロセス全体を通して効果的に露光バイアスを軽減することが示唆された。
論文 参考訳(メタデータ) (2024-02-20T09:10:08Z) - Generative Model-based Feature Knowledge Distillation for Action
Recognition [11.31068233536815]
本稿では,軽量学生モデルの学習のための生成モデルを用いた,革新的な知識蒸留フレームワークについて紹介する。
提案手法の有効性は,多種多様な人気データセットに対する総合的な実験によって実証される。
論文 参考訳(メタデータ) (2023-12-14T03:55:29Z) - Improving Knowledge Distillation for BERT Models: Loss Functions,
Mapping Methods, and Weight Tuning [1.1510009152620668]
本研究は, BERTモデル圧縮のための知識蒸留について検討し, 適用する。
本研究では, 損失関数を用いた実験, トランスフォーマー層マッピング法, 注意の重み付けと表現損失の調整など, 知識蒸留を改善するための様々な手法について検討する。
この研究の目的は、知識蒸留の効率性と効率を改善し、自然言語処理タスクのより効率的で正確なモデルの開発を可能にすることである。
論文 参考訳(メタデータ) (2023-08-26T20:59:21Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
本稿では,既存の複雑な相互作用モデルから,知識蒸留によるCTR予測のための高次特徴相互作用を学習するための非巡回グラフファクトリゼーションマシン(KD-DAGFM)を提案する。
KD-DAGFMは、オンラインとオフラインの両方の実験において、最先端のFLOPの21.5%未満で最高の性能を達成する。
論文 参考訳(メタデータ) (2022-11-21T03:09:42Z) - On effects of Knowledge Distillation on Transfer Learning [0.0]
本稿では,知識蒸留と伝達学習を組み合わせたTL+KDという機械学習アーキテクチャを提案する。
我々は,教師ネットワークの指導と知識を微調整中に利用することにより,学生ネットワークを改良し,精度などの検証性能を向上させることができることを示した。
論文 参考訳(メタデータ) (2022-10-18T08:11:52Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
皮膚がんは最も一般的な悪性腫瘍の1つであり、人口に影響を与え、世界中で経済的な重荷を負っている。
皮膚がん検出のほとんどの研究は、ポータブルデバイス上での計算資源の制限を考慮せずに、高い予測精度を追求している。
本研究は,皮膚疾患分類のための汎用的なKDフレームワークに多様な知識を統一する,SSD-KDと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T06:54:29Z) - A Closer Look at Knowledge Distillation with Features, Logits, and
Gradients [81.39206923719455]
知識蒸留(KD)は、学習した知識をあるニューラルネットワークモデルから別のニューラルネットワークモデルに転送するための重要な戦略である。
この研究は、古典的なKL分割基準を異なる知識源で近似することで、一連の知識蒸留戦略を動機付ける新しい視点を提供する。
分析の結果,ロジットは一般的により効率的な知識源であり,十分な特徴次元を持つことがモデル設計に不可欠であることが示唆された。
論文 参考訳(メタデータ) (2022-03-18T21:26:55Z) - On the benefits of knowledge distillation for adversarial robustness [53.41196727255314]
知識蒸留は, 対向ロバスト性において, 最先端モデルの性能を高めるために直接的に利用できることを示す。
本稿では,モデルの性能向上のための新しいフレームワークであるAdversarial Knowledge Distillation (AKD)を提案する。
論文 参考訳(メタデータ) (2022-03-14T15:02:13Z) - Knowledge Distillation: A Survey [87.51063304509067]
ディープニューラルネットワークは、特にコンピュータビジョンタスクにおいて、産業と学術の両方で成功している。
リソースが限られているデバイスに、これらの面倒なディープモデルをデプロイすることは難しい。
知識蒸留は、大きな教師モデルから小さな学生モデルを効果的に学習する。
論文 参考訳(メタデータ) (2020-06-09T21:47:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。