Hybrid Deep Learning Model to Estimate Cognitive Effort from fNIRS Signals in Educational Game Playing
- URL: http://arxiv.org/abs/2504.13883v1
- Date: Thu, 03 Apr 2025 17:54:59 GMT
- Title: Hybrid Deep Learning Model to Estimate Cognitive Effort from fNIRS Signals in Educational Game Playing
- Authors: Shayla Sharmin, Roghayeh Leila Barmaki,
- Abstract summary: This study estimates cognitive effort based on functional near-infrared spectroscopy (fNIRS) data and performance scores using a hybrid deep learning model.<n>Relative neural efficiency (RNE) and relative neural involvement (RNI) are two metrics that have been used to represent cognitive effort.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study estimates cognitive effort (CE) based on functional near-infrared spectroscopy (fNIRS) data and performance scores using a hybrid deep learning model. The estimation of CE enables educators to modify material to enhance learning effectiveness and student engagement. Relative neural efficiency (RNE) and relative neural involvement (RNI) are two metrics that have been used to represent CE. To estimate RNE and RNI we need hemodynamic response in the brain and the performance score of a task.We collected oxygenated hemoglobin ($\Delta \mathrm{HbO}$). Sixteen participants answered 16 questions in a unity-based educational game, each with a 30-second response time. We used deep learning models to predict the performance score and estimate RNE and RNI to understand CE. The study compares traditional machine learning techniques with deep learning models such as CNN, LSTM, BiLSTM, and a hybrid CNN-GRU to determine which approach provides better accuracy in predicting performance scores. The result shows that the hybrid CNN-GRU gives better performance with 78.36\% training accuracy and 73.08\% test accuracy than other models. We performed XGBoost on the extracted GRU feature and got the highest accuracy (69.23\%). This suggests that the features learned from this hybrid model generalize better even in traditional machine learning algorithms. We used the $\Delta \mathrm{HbO}$ and predicted score to calculate RNE and RNI to observe cognitive effort in our four test cases. Our result shows that even with moderate accuracy, the predicted RNE and RNI closely follows the actual trends. we also observed that when participants were in a state of high CE, introducing rest led decrease of CE. These findings can be helpful to design and improve learning environments and provide valuable insights in learning materials.
Related papers
- Accurate Multi-Category Student Performance Forecasting at Early Stages of Online Education Using Neural Networks [2.195766695109612]
This study introduces a novel neural network-based approach capable of accurately predicting student performance.<n>The proposed model predicts outcomes in Distinction, Fail, Pass, and Withdrawn categories.<n>The results indicate that the prediction accuracy of the proposed method is about 25% more than the existing state-of-the-art.
arXiv Detail & Related papers (2024-12-08T13:37:30Z) - A Comparative Study of Hybrid Models in Health Misinformation Text Classification [0.43695508295565777]
This study evaluates the effectiveness of machine learning (ML) and deep learning (DL) models in detecting COVID-19-related misinformation on online social networks (OSNs)
Our study concludes that DL and hybrid DL models are more effective than conventional ML algorithms for detecting COVID-19 misinformation on OSNs.
arXiv Detail & Related papers (2024-10-08T19:43:37Z) - Forecasting Lithium-Ion Battery Longevity with Limited Data
Availability: Benchmarking Different Machine Learning Algorithms [3.4628430044380973]
This work aims to compare the relative performance of different machine learning algorithms, both traditional machine learning and deep learning.
We investigated 14 different machine learning models that were fed handcrafted features based on statistical data.
Deep learning models were observed to perform particularly poorly on raw, limited data.
arXiv Detail & Related papers (2023-12-10T00:51:50Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Evaluating raw waveforms with deep learning frameworks for speech
emotion recognition [0.0]
We represent a model, which feeds raw audio files directly into the deep neural networks without any feature extraction stage.
We use six different data sets, EMO-DB, RAVDESS, TESS, CREMA, SAVEE, and TESS+RAVDESS.
The proposed model performs 90.34% of accuracy for EMO-DB with CNN model, 90.42% of accuracy for RAVDESS, 99.48% of accuracy for TESS with LSTM model, 69.72% of accuracy for CREMA with CNN model, 85.76% of accuracy for SAVEE with CNN model in
arXiv Detail & Related papers (2023-07-06T07:27:59Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Training Deep Neural Networks with Constrained Learning Parameters [4.917317902787792]
A significant portion of deep learning tasks would run on edge computing systems.
We propose the Combinatorial Neural Network Training Algorithm (CoNNTrA)
CoNNTrA trains deep learning models with ternary learning parameters on the MNIST, Iris and ImageNet data sets.
Our results indicate that CoNNTrA models use 32x less memory and have errors at par with the Backpropagation models.
arXiv Detail & Related papers (2020-09-01T16:20:11Z) - RIFLE: Backpropagation in Depth for Deep Transfer Learning through
Re-Initializing the Fully-connected LayEr [60.07531696857743]
Fine-tuning the deep convolution neural network(CNN) using a pre-trained model helps transfer knowledge learned from larger datasets to the target task.
We propose RIFLE - a strategy that deepens backpropagation in transfer learning settings.
RIFLE brings meaningful updates to the weights of deep CNN layers and improves low-level feature learning.
arXiv Detail & Related papers (2020-07-07T11:27:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.