論文の概要: MEQA: A Meta-Evaluation Framework for Question & Answer LLM Benchmarks
- arxiv url: http://arxiv.org/abs/2504.14039v1
- Date: Fri, 18 Apr 2025 19:01:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 05:42:16.850158
- Title: MEQA: A Meta-Evaluation Framework for Question & Answer LLM Benchmarks
- Title(参考訳): MEQA: LLMベンチマークのためのメタ評価フレームワーク
- Authors: Jaime Raldua Veuthey, Zainab Ali Majid, Suhas Hariharan, Jacob Haimes,
- Abstract要約: 質問と回答(QA)ベンチマークのメタ評価のためのフレームワークであるMEQAを提案する。
我々は,人間とLLM評価器を用いたサイバーセキュリティベンチマークにおいて,この手法を実証する。
私たちは、強力な防御ツールとセキュリティ脅威として、AIモデルの二重性によるテストドメインの選択を動機付けています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As Large Language Models (LLMs) advance, their potential for widespread societal impact grows simultaneously. Hence, rigorous LLM evaluations are both a technical necessity and social imperative. While numerous evaluation benchmarks have been developed, there remains a critical gap in meta-evaluation: effectively assessing benchmarks' quality. We propose MEQA, a framework for the meta-evaluation of question and answer (QA) benchmarks, to provide standardized assessments, quantifiable scores, and enable meaningful intra-benchmark comparisons. We demonstrate this approach on cybersecurity benchmarks, using human and LLM evaluators, highlighting the benchmarks' strengths and weaknesses. We motivate our choice of test domain by AI models' dual nature as powerful defensive tools and security threats.
- Abstract(参考訳): 大規模言語モデル(LLMs)が進むにつれて、その社会的影響の可能性は同時に増大する。
したがって、厳格なLCM評価は技術的必要と社会的義務の両方である。
多くの評価ベンチマークが開発されているが、メタ評価において重要なギャップが残っており、ベンチマークの品質を効果的に評価している。
本稿では,質問と回答のベンチマーク(QA)のメタ評価のためのフレームワークであるMEQAを提案する。
我々は,このアプローチを,人間とLLM評価器を用いたサイバーセキュリティベンチマークで実証し,ベンチマークの長所と短所を強調した。
私たちは、強力な防御ツールとセキュリティ脅威として、AIモデルの二重性によるテストドメインの選択を動機付けています。
関連論文リスト
- Learning to Align Multi-Faceted Evaluation: A Unified and Robust Framework [61.38174427966444]
大規模言語モデル(LLM)は、様々なシナリオにおける自動評価のために、より広く使われている。
従来の研究では、強力なプロプライエタリモデルの評価と判断を再現するために、オープンソースのLLMを微調整しようと試みてきた。
本稿では,評価基準を適応的に定式化し,テキストベースとコード駆動分析の両方を合成する新しい評価フレームワークARJudgeを提案する。
論文 参考訳(メタデータ) (2025-02-26T06:31:45Z) - Beyond the Singular: The Essential Role of Multiple Generations in Effective Benchmark Evaluation and Analysis [10.133537818749291]
大規模言語モデル(LLM)は、現実世界のアプリケーションにおいて重要なユーティリティを実証している。
LLMの能力を評価するにはベンチマーク評価が不可欠である。
論文 参考訳(メタデータ) (2025-02-13T03:43:33Z) - The Vulnerability of Language Model Benchmarks: Do They Accurately Reflect True LLM Performance? [1.3810901729134184]
大きな言語モデル(LLM)は、真の言語理解と適応性を示すのに失敗しながら、標準化されたテストで優れている。
NLP評価フレームワークの系統的解析により,評価スペクトルにまたがる広範囲にわたる脆弱性が明らかになった。
我々は、操作に抵抗し、データの汚染を最小限に抑え、ドメイン固有のタスクを評価する新しい評価方法の土台を築いた。
論文 参考訳(メタデータ) (2024-12-02T20:49:21Z) - BetterBench: Assessing AI Benchmarks, Uncovering Issues, and Establishing Best Practices [28.70453947993952]
我々は、AIベンチマークのライフサイクル全体で46のベストプラクティスを検討し、それに対して24のAIベンチマークを評価するアセスメントフレームワークを開発した。
私たちは、大きな品質差があり、よく使われるベンチマークが重大な問題に悩まされていることに気付きました。
論文 参考訳(メタデータ) (2024-11-20T02:38:24Z) - CARMO: Dynamic Criteria Generation for Context-Aware Reward Modelling [27.86204841898399]
大規模な言語モデルでのリワードモデリングは、ハッキングに報奨を与える可能性がある。
本稿では,この問題を緩和するためにコンテキストアウェア・リワード・モデリング(CARMO)を提案する。
我々は、生成モデルに対するゼロショット設定における新しい最先端性能を確立し、Reward Benchの2.1%の改善を実現した。
論文 参考訳(メタデータ) (2024-10-28T21:18:49Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
現代の言語モデル(LM)は、能力評価において新たな課題を提起する。
メトリクスに自信を持つためには、モデルミアロジの新たな規律が必要です。
論文 参考訳(メタデータ) (2024-07-22T17:52:12Z) - Disce aut Deficere: Evaluating LLMs Proficiency on the INVALSI Italian Benchmark [12.729687989535359]
大規模言語モデル(LLM)を英語以外の言語で評価することは、その言語的汎用性、文化的妥当性、そして多様なグローバルな文脈における適用性を保証するために不可欠である。
InVALSIテストは、イタリア全土の教育能力を測定するために設計された、確立された評価セットである。
論文 参考訳(メタデータ) (2024-06-25T13:20:08Z) - The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Benchは、77のタスクにわたるLMの9つの異なる能力を徹底的に評価するために設計された、原則化された世代ベンチマークである。
BiGGen Benchの重要な特徴は、インスタンス固有の評価基準の使用であり、人間の評価のニュアンスな識別を忠実に反映している。
論文 参考訳(メタデータ) (2024-06-09T12:30:30Z) - Can Large Language Models be Trusted for Evaluation? Scalable
Meta-Evaluation of LLMs as Evaluators via Agent Debate [74.06294042304415]
エージェント・ディベート支援型メタ評価フレームワークであるScaleEvalを提案する。
フレームワークのコードをGitHubで公開しています。
論文 参考訳(メタデータ) (2024-01-30T07:03:32Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - Evaluating the Performance of Large Language Models on GAOKAO Benchmark [53.663757126289795]
本稿では,中国のガオカオ検定の質問をサンプルとして用いた直感的なベンチマークであるガオカオベンチについて紹介する。
人間の評価により, GPT-4, ChatGPT, ERNIE-Botを含むLLMの変換総得点を得た。
また、LLMを用いて主観的質問を格付けし、モデルスコアが人間のスコアと適度な一貫性を達成することを確認する。
論文 参考訳(メタデータ) (2023-05-21T14:39:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。