A synthetic dataset of French electric load curves with temperature conditioning
- URL: http://arxiv.org/abs/2504.14046v1
- Date: Fri, 18 Apr 2025 19:28:49 GMT
- Title: A synthetic dataset of French electric load curves with temperature conditioning
- Authors: Tahar Nabil, Ghislain Agoua, Pierre Cauchois, Anne De Moliner, BenoƮt Grossin,
- Abstract summary: This paper introduces a new synthetic load curve dataset generated by conditional latent diffusion.<n>We also provide the contracted power, time-of-use plan and local temperature used for generation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The undergoing energy transition is causing behavioral changes in electricity use, e.g. with self-consumption of local generation, or flexibility services for demand control. To better understand these changes and the challenges they induce, accessing individual smart meter data is crucial. Yet this is personal data under the European GDPR. A widespread use of such data requires thus to create synthetic realistic and privacy-preserving samples. This paper introduces a new synthetic load curve dataset generated by conditional latent diffusion. We also provide the contracted power, time-of-use plan and local temperature used for generation. Fidelity, utility and privacy of the dataset are thoroughly evaluated, demonstrating its good quality and thereby supporting its interest for energy modeling applications.
Related papers
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - Differentially Private Publication of Electricity Time Series Data in Smart Grids [8.87717126222646]
Time-series of power consumption over geographical areas are valuable data sources to study consumer behavior and guide energy policy decisions.
However, publication of such data raises significant privacy issues, as it may reveal sensitive details about personal habits and lifestyles.
We introduce emT (S Private Timeseries), a novel method for DP-compliant publication of electricity consumption data.
arXiv Detail & Related papers (2024-08-24T23:30:09Z) - Faraday: Synthetic Smart Meter Generator for the smart grid [0.0]
We present a Variational Auto-encoder (VAE)-based model trained over 300 million smart meter data readings from an energy supplier in the UK.
We show how the model can be used for real-world applications by grid modellers interested in modelling energy grids of the future.
arXiv Detail & Related papers (2024-04-05T13:18:10Z) - Creating synthetic energy meter data using conditional diffusion and building metadata [0.0]
The study proposes a conditional diffusion model for generating high-quality synthetic energy data using relevant metadata.
Using a dataset comprising 1,828 power meters from various buildings and countries, this model is compared with traditional methods.
Results demonstrate the proposed diffusion model's superior performance, with a 36% reduction in Frechet Inception Distance (FID) score and a 13% decrease in Kullback-Leibler divergence (KL divergence)
arXiv Detail & Related papers (2024-03-31T01:58:38Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - Home Electricity Data Generator (HEDGE): An open-access tool for the
generation of electric vehicle, residential demand, and PV generation
profiles [0.0]
The Home Electricity Data Generator (HEDGE) is an open-access tool for the random generation of realistic residential energy data.
It generates realistic daily profiles of residential PV generation, household electric loads, and electric vehicle consumption and at-home availability.
Generative adversarial networks (GANs) are then trained to generate realistic synthetic data representative of each behaviour groups.
arXiv Detail & Related papers (2023-10-02T21:51:42Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - High-resolution synthetic residential energy use profiles for the United
States [12.699816591560712]
We release a large-scale, synthetic, residential energy-use dataset for the residential sector across the contiguous United States.
The data comprises of hourly energy use profiles for synthetic households, disaggregated into Thermostatically Controlled Loads (TCL) and appliance use.
arXiv Detail & Related papers (2022-10-14T20:55:10Z) - Investigating Underlying Drivers of Variability in Residential Energy
Usage Patterns with Daily Load Shape Clustering of Smart Meter Data [53.51471969978107]
Large-scale deployment of smart meters has motivated increasing studies to explore disaggregated daily load patterns.
This paper aims to shed light on the mechanisms by which electricity consumption patterns exhibit variability.
arXiv Detail & Related papers (2021-02-16T16:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.