Differentially Private Publication of Electricity Time Series Data in Smart Grids
- URL: http://arxiv.org/abs/2408.16017v1
- Date: Sat, 24 Aug 2024 23:30:09 GMT
- Title: Differentially Private Publication of Electricity Time Series Data in Smart Grids
- Authors: Sina Shaham, Gabriel Ghinita, Bhaskar Krishnamachari, Cyrus Shahabi,
- Abstract summary: Time-series of power consumption over geographical areas are valuable data sources to study consumer behavior and guide energy policy decisions.
However, publication of such data raises significant privacy issues, as it may reveal sensitive details about personal habits and lifestyles.
We introduce emT (S Private Timeseries), a novel method for DP-compliant publication of electricity consumption data.
- Score: 8.87717126222646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smart grids are a valuable data source to study consumer behavior and guide energy policy decisions. In particular, time-series of power consumption over geographical areas are essential in deciding the optimal placement of expensive resources (e.g., transformers, storage elements) and their activation schedules. However, publication of such data raises significant privacy issues, as it may reveal sensitive details about personal habits and lifestyles. Differential privacy (DP) is well-suited for sanitization of individual data, but current DP techniques for time series lead to significant loss in utility, due to the existence of temporal correlation between data readings. We introduce {\em STPT (Spatio-Temporal Private Timeseries)}, a novel method for DP-compliant publication of electricity consumption data that analyzes spatio-temporal attributes and captures both micro and macro patterns by leveraging RNNs. Additionally, it employs a partitioning method for releasing electricity consumption time series based on identified patterns. We demonstrate through extensive experiments, on both real-world and synthetic datasets, that STPT significantly outperforms existing benchmarks, providing a well-balanced trade-off between data utility and user privacy.
Related papers
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - ST-DPGAN: A Privacy-preserving Framework for Spatiotemporal Data Generation [19.18074489351738]
We propose a Graph-based model for generating privacy-protected data.
Experiments conducted on three real-worldtemporal datasets validate the efficacy of our model.
The prediction model trained on our generated data maintains a competitive edge compared to the model trained on the original data.
arXiv Detail & Related papers (2024-06-04T04:43:54Z) - Local Differential Privacy for Smart Meter Data Sharing [13.362785829428457]
Local differential privacy (LDP) methods provide strong privacy guarantees with high efficiency in addressing privacy concerns.
We propose a novel LDP approach (named LDP-SmartEnergy) that utilizes randomized response techniques with sliding windows.
Our evaluations show that LDP-SmartEnergy runs efficiently compared to baseline methods.
arXiv Detail & Related papers (2023-11-08T09:22:23Z) - Home Electricity Data Generator (HEDGE): An open-access tool for the
generation of electric vehicle, residential demand, and PV generation
profiles [0.0]
The Home Electricity Data Generator (HEDGE) is an open-access tool for the random generation of realistic residential energy data.
It generates realistic daily profiles of residential PV generation, household electric loads, and electric vehicle consumption and at-home availability.
Generative adversarial networks (GANs) are then trained to generate realistic synthetic data representative of each behaviour groups.
arXiv Detail & Related papers (2023-10-02T21:51:42Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Grouped self-attention mechanism for a memory-efficient Transformer [64.0125322353281]
Real-world tasks such as forecasting weather, electricity consumption, and stock market involve predicting data that vary over time.
Time-series data are generally recorded over a long period of observation with long sequences owing to their periodic characteristics and long-range dependencies over time.
We propose two novel modules, Grouped Self-Attention (GSA) and Compressed Cross-Attention (CCA)
Our proposed model efficiently exhibited reduced computational complexity and performance comparable to or better than existing methods.
arXiv Detail & Related papers (2022-10-02T06:58:49Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
We propose a differentially private high-dimensional data publication mechanism (DP2-Pub) that runs in two phases.
splitting attributes into several low-dimensional clusters with high intra-cluster cohesion and low inter-cluster coupling helps obtain a reasonable privacy budget.
We also extend our DP2-Pub mechanism to the scenario with a semi-honest server which satisfies local differential privacy.
arXiv Detail & Related papers (2022-08-24T17:52:43Z) - FedREP: Towards Horizontal Federated Load Forecasting for Retail Energy
Providers [1.1254693939127909]
We propose a novel horizontal privacy-preserving federated learning framework for energy load forecasting, namely FedREP.
We consider a federated learning system consisting of a control centre and multiple retailers by enabling multiple REPs to build a common, robust machine learning model without sharing data.
For forecasting, we use a state-of-the-art Long Short-Term Memory (LSTM) neural network due to its ability to learn long term sequences of observations.
arXiv Detail & Related papers (2022-03-01T04:16:19Z) - Investigating Underlying Drivers of Variability in Residential Energy
Usage Patterns with Daily Load Shape Clustering of Smart Meter Data [53.51471969978107]
Large-scale deployment of smart meters has motivated increasing studies to explore disaggregated daily load patterns.
This paper aims to shed light on the mechanisms by which electricity consumption patterns exhibit variability.
arXiv Detail & Related papers (2021-02-16T16:56:27Z) - Deep Directed Information-Based Learning for Privacy-Preserving Smart
Meter Data Release [30.409342804445306]
We study the problem in the context of time series data and smart meters (SMs) power consumption measurements.
We introduce the Directed Information (DI) as a more meaningful measure of privacy in the considered setting.
Our empirical studies on real-world data sets from SMs measurements in the worst-case scenario show the existing trade-offs between privacy and utility.
arXiv Detail & Related papers (2020-11-20T13:41:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.