Occlusion-Ordered Semantic Instance Segmentation
- URL: http://arxiv.org/abs/2504.14054v1
- Date: Fri, 18 Apr 2025 19:52:37 GMT
- Title: Occlusion-Ordered Semantic Instance Segmentation
- Authors: Soroosh Baselizadeh, Cheuk-To Yu, Olga Veksler, Yuri Boykov,
- Abstract summary: Occlusion-Ordered Instance and segmentation of Instance (OOSIS)<n>We develop an approach to OOSIS that extracts instances and their order simultaneously from oriented occlusion boundaries and semantic segmentation.<n>We achieve better performance than strong baselines on KINS and COCOA datasets.
- Score: 14.767310282538688
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Standard semantic instance segmentation provides useful, but inherently 2D information from a single image. To enable 3D analysis, one usually integrates absolute monocular depth estimation with instance segmentation. However, monocular depth is a difficult task. Instead, we leverage a simpler single-image task, occlusion-based relative depth ordering, providing coarser but useful 3D information. We show that relative depth ordering works more reliably from occlusions than from absolute depth. We propose to solve the joint task of relative depth ordering and segmentation of instances based on occlusions. We call this task Occlusion-Ordered Semantic Instance Segmentation (OOSIS). We develop an approach to OOSIS that extracts instances and their occlusion order simultaneously from oriented occlusion boundaries and semantic segmentation. Unlike popular detect-and-segment framework for instance segmentation, combining occlusion ordering with instance segmentation allows a simple and clean formulation of OOSIS as a labeling problem. As a part of our solution for OOSIS, we develop a novel oriented occlusion boundaries approach that significantly outperforms prior work. We also develop a new joint OOSIS metric based both on instance mask accuracy and correctness of their occlusion order. We achieve better performance than strong baselines on KINS and COCOA datasets.
Related papers
- LESS: Label-Efficient and Single-Stage Referring 3D Segmentation [55.06002976797879]
Referring 3D is a visual-language task that segments all points of the specified object from a 3D point cloud described by a sentence of query.
We propose a novel Referring 3D pipeline, Label-Efficient and Single-Stage, dubbed LESS, which is only under the supervision of efficient binary mask.
We achieve state-of-the-art performance on ScanRefer dataset by surpassing the previous methods about 3.7% mIoU using only binary labels.
arXiv Detail & Related papers (2024-10-17T07:47:41Z) - Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3D segmentation is a core problem in computer vision.
densely labeling 3D point clouds to employ fully-supervised training remains too labor intensive and expensive.
Semi-supervised training provides a more practical alternative, where only a small set of labeled data is given, accompanied by a larger unlabeled set.
arXiv Detail & Related papers (2024-09-12T14:54:31Z) - Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation [50.51125319374404]
We propose a novel self-training network InsTeacher3D to explore and exploit pure instance knowledge from unlabeled data.
Experimental results on multiple large-scale datasets show that the InsTeacher3D significantly outperforms prior state-of-the-art semi-supervised approaches.
arXiv Detail & Related papers (2024-06-24T16:35:58Z) - Weakly Supervised 3D Instance Segmentation without Instance-level
Annotations [57.615325809883636]
3D semantic scene understanding tasks have achieved great success with the emergence of deep learning, but often require a huge amount of manually annotated training data.
We propose the first weakly-supervised 3D instance segmentation method that only requires categorical semantic labels as supervision.
By generating pseudo instance labels from categorical semantic labels, our designed approach can also assist existing methods for learning 3D instance segmentation at reduced annotation cost.
arXiv Detail & Related papers (2023-08-03T12:30:52Z) - Collaborative Propagation on Multiple Instance Graphs for 3D Instance
Segmentation with Single-point Supervision [63.429704654271475]
We propose a novel weakly supervised method RWSeg that only requires labeling one object with one point.
With these sparse weak labels, we introduce a unified framework with two branches to propagate semantic and instance information.
Specifically, we propose a Cross-graph Competing Random Walks (CRW) algorithm that encourages competition among different instance graphs.
arXiv Detail & Related papers (2022-08-10T02:14:39Z) - BBBD: Bounding Box Based Detector for Occlusion Detection and Order
Recovery [0.0]
Occlusion handling is one of the challenges of object detection and segmentation, and scene understanding.
We propose a simpler and faster method that can perform both operations without any training and only requires the modal segmentation masks.
arXiv Detail & Related papers (2022-04-27T10:56:18Z) - SOLO: A Simple Framework for Instance Segmentation [84.00519148562606]
"instance categories" assigns categories to each pixel within an instance according to the instance's location.
"SOLO" is a simple, direct, and fast framework for instance segmentation with strong performance.
Our approach achieves state-of-the-art results for instance segmentation in terms of both speed and accuracy.
arXiv Detail & Related papers (2021-06-30T09:56:54Z) - Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with
Deep Metric Learning [5.699350798684963]
We propose a simple, yet efficient algorithm for 3D instance segmentation using deep metric learning.
For high-level intelligent tasks from a large scale scene, 3D instance segmentation recognizes individual instances of objects.
We demonstrate the state-of-the-art performance of our algorithm in the ScanNet 3D instance segmentation benchmark on AP score.
arXiv Detail & Related papers (2020-07-07T02:17:44Z) - BANet: Bidirectional Aggregation Network with Occlusion Handling for
Panoptic Segmentation [30.008473359758632]
Panoptic segmentation aims to perform instance segmentation for foreground instances and semantic segmentation for background stuff simultaneously.
We propose a novel deep panoptic segmentation scheme based on a bidirectional learning pipeline.
The experimental results on COCO panoptic benchmark validate the effectiveness of our proposed method.
arXiv Detail & Related papers (2020-03-31T08:57:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.