Transformation of audio embeddings into interpretable, concept-based representations
- URL: http://arxiv.org/abs/2504.14076v1
- Date: Fri, 18 Apr 2025 21:00:50 GMT
- Title: Transformation of audio embeddings into interpretable, concept-based representations
- Authors: Alice Zhang, Edison Thomaz, Lie Lu,
- Abstract summary: We explore the semantic interpretability of audio embeddings extracted from audio neural networks.<n>We transform CLAP embeddings into concept-based, sparse representations with semantic interpretability.<n>We publish three audio-specific vocabularies for concept-based interpretability of audio embeddings.
- Score: 1.5293427903448022
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Advancements in audio neural networks have established state-of-the-art results on downstream audio tasks. However, the black-box structure of these models makes it difficult to interpret the information encoded in their internal audio representations. In this work, we explore the semantic interpretability of audio embeddings extracted from these neural networks by leveraging CLAP, a contrastive learning model that brings audio and text into a shared embedding space. We implement a post-hoc method to transform CLAP embeddings into concept-based, sparse representations with semantic interpretability. Qualitative and quantitative evaluations show that the concept-based representations outperform or match the performance of original audio embeddings on downstream tasks while providing interpretability. Additionally, we demonstrate that fine-tuning the concept-based representations can further improve their performance on downstream tasks. Lastly, we publish three audio-specific vocabularies for concept-based interpretability of audio embeddings.
Related papers
- Focal Modulation Networks for Interpretable Sound Classification [14.360545133618267]
This paper addresses the problem of interpretability by-design in the audio domain by utilizing the recently proposed attention-free focal modulation networks (FocalNets)
We apply FocalNets to the task of environmental sound classification for the first time and evaluate their interpretability properties on the popular ESC-50 dataset.
Our method outperforms a similarly sized vision transformer both in terms of accuracy and interpretability.
arXiv Detail & Related papers (2024-02-05T06:20:52Z) - Self-supervised Fine-tuning for Improved Content Representations by
Speaker-invariant Clustering [78.2927924732142]
We propose speaker-invariant clustering (Spin) as a novel self-supervised learning method.
Spin disentangles speaker information and preserves content representations with just 45 minutes of fine-tuning on a single GPU.
arXiv Detail & Related papers (2023-05-18T15:59:36Z) - Tackling Interpretability in Audio Classification Networks with
Non-negative Matrix Factorization [2.423660247459463]
This paper tackles two major problem settings for interpretability of audio processing networks.
For post-hoc interpretation, we aim to interpret decisions of a network in terms of high-level audio objects that are also listenable for the end-user.
We propose a novel interpreter design that incorporates non-negative matrix factorization (NMF)
arXiv Detail & Related papers (2023-05-11T20:50:51Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
We propose a unified cross-modal representation learning framework VATLM (Visual-Audio-Text Language Model)
The proposed VATLM employs a unified backbone network to model the modality-independent information.
In order to integrate these three modalities into one shared semantic space, VATLM is optimized with a masked prediction task of unified tokens.
arXiv Detail & Related papers (2022-11-21T09:10:10Z) - Content-Context Factorized Representations for Automated Speech
Recognition [12.618527387900079]
We introduce an unsupervised, encoder-agnostic method for factoring speech-encoder representations into explicit content-encoding representations and spurious context-encoding representations.
We demonstrate improved performance on standard ASR benchmarks, as well as improved performance in both real-world and artificially noisy ASR scenarios.
arXiv Detail & Related papers (2022-05-19T21:34:40Z) - Listen to Interpret: Post-hoc Interpretability for Audio Networks with
NMF [2.423660247459463]
We propose a novel interpreter design that incorporates non-negative matrix factorization (NMF)
Our methodology allows us to generate intuitive audio-based interpretations that explicitly enhance parts of the input signal most relevant for a network's decision.
We demonstrate our method's applicability on popular benchmarks, including a real-world multi-label classification task.
arXiv Detail & Related papers (2022-02-23T13:00:55Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
One-shot voice conversion can be effectively achieved by speech representation disentanglement.
We employ vector quantization (VQ) for content encoding and introduce mutual information (MI) as the correlation metric during training.
Experimental results reflect the superiority of the proposed method in learning effective disentangled speech representations.
arXiv Detail & Related papers (2021-06-18T13:50:38Z) - End-to-end Audio-visual Speech Recognition with Conformers [65.30276363777514]
We present a hybrid CTC/Attention model based on a ResNet-18 and Convolution-augmented transformer (Conformer)
In particular, the audio and visual encoders learn to extract features directly from raw pixels and audio waveforms.
We show that our proposed models raise the state-of-the-art performance by a large margin in audio-only, visual-only, and audio-visual experiments.
arXiv Detail & Related papers (2021-02-12T18:00:08Z) - Unsupervised Cross-Modal Audio Representation Learning from Unstructured
Multilingual Text [69.55642178336953]
We present an approach to unsupervised audio representation learning.
Based on a triplet neural network architecture, we harnesses semantically related cross-modal information to estimate audio track-relatedness.
We show that our approach is invariant to the variety of annotation styles as well as to the different languages of this collection.
arXiv Detail & Related papers (2020-03-27T07:37:15Z) - Disentangled Speech Embeddings using Cross-modal Self-supervision [119.94362407747437]
We develop a self-supervised learning objective that exploits the natural cross-modal synchrony between faces and audio in video.
We construct a two-stream architecture which: (1) shares low-level features common to both representations; and (2) provides a natural mechanism for explicitly disentangling these factors.
arXiv Detail & Related papers (2020-02-20T14:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.