Leakage and Interpretability in Concept-Based Models
- URL: http://arxiv.org/abs/2504.14094v1
- Date: Fri, 18 Apr 2025 22:21:06 GMT
- Title: Leakage and Interpretability in Concept-Based Models
- Authors: Enrico Parisini, Tapabrata Chakraborti, Chris Harbron, Ben D. MacArthur, Christopher R. S. Banerji,
- Abstract summary: Concept Bottleneck Models aim to improve interpretability by predicting high-level intermediate concepts.<n>They are known to suffer from information leakage, whereby models exploit unintended information encoded within the learned concepts.<n>We introduce an information-theoretic framework to rigorously characterise and quantify leakage.
- Score: 0.24466725954625887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Concept Bottleneck Models aim to improve interpretability by predicting high-level intermediate concepts, representing a promising approach for deployment in high-risk scenarios. However, they are known to suffer from information leakage, whereby models exploit unintended information encoded within the learned concepts. We introduce an information-theoretic framework to rigorously characterise and quantify leakage, and define two complementary measures: the concepts-task leakage (CTL) and interconcept leakage (ICL) scores. We show that these measures are strongly predictive of model behaviour under interventions and outperform existing alternatives in robustness and reliability. Using this framework, we identify the primary causes of leakage and provide strong evidence that Concept Embedding Models exhibit substantial leakage regardless of the hyperparameters choice. Finally, we propose practical guidelines for designing concept-based models to reduce leakage and ensure interpretability.
Related papers
- Measuring Leakage in Concept-Based Methods: An Information Theoretic Approach [8.391254800873599]
Concept Bottleneck Models (CBMs) aim to enhance interpretability by structuring predictions around human-understandable concepts.<n>However, unintended information leakage, where predictive signals bypass the concept bottleneck, compromises their transparency.<n>This paper introduces an information-theoretic measure to quantify leakage in CBMs, capturing the extent to which concept embeddings encode additional, unintended information beyond the specified concepts.
arXiv Detail & Related papers (2025-04-13T07:09:55Z) - Towards Robust and Reliable Concept Representations: Reliability-Enhanced Concept Embedding Model [22.865870813626316]
Concept Bottleneck Models (CBMs) aim to enhance interpretability by predicting human-understandable concepts as intermediates for decision-making.<n>Two inherent issues contribute to concept unreliability: sensitivity to concept-irrelevant features and lack of semantic consistency for the same concept across different samples.<n>We propose the Reliability-Enhanced Concept Embedding Model (RECEM), which introduces a two-fold strategy: Concept-Level Disentanglement to separate irrelevant features from concept-relevant information and a Concept Mixup mechanism to ensure semantic alignment across samples.
arXiv Detail & Related papers (2025-02-03T09:29:39Z) - Constructing Concept-based Models to Mitigate Spurious Correlations with Minimal Human Effort [31.992947353231564]
Concept Bottleneck Models (CBMs) can provide a principled way of disclosing and guiding model behaviors through human-understandable concepts.
We propose a novel framework designed to exploit pre-trained models while being immune to these biases, thereby reducing vulnerability to spurious correlations.
We evaluate the proposed method on multiple datasets, and the results demonstrate its effectiveness in reducing model reliance on spurious correlations while preserving its interpretability.
arXiv Detail & Related papers (2024-07-12T03:07:28Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions.
Existing approaches often require numerous human interventions per image to achieve strong performances.
We introduce a trainable concept realignment intervention module, which leverages concept relations to realign concept assignments post-intervention.
arXiv Detail & Related papers (2024-05-02T17:59:01Z) - Benchmarking and Enhancing Disentanglement in Concept-Residual Models [4.177318966048984]
Concept bottleneck models (CBMs) are interpretable models that first predict a set of semantically meaningful features.
CBMs' performance depends on the engineered features and can severely suffer from incomplete sets of concepts.
This work proposes three novel approaches to mitigate information leakage by disentangling concepts and residuals.
arXiv Detail & Related papers (2023-11-30T21:07:26Z) - Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models? [52.238883592674696]
Ring-A-Bell is a model-agnostic red-teaming tool for T2I diffusion models.
It identifies problematic prompts for diffusion models with the corresponding generation of inappropriate content.
Our results show that Ring-A-Bell, by manipulating safe prompting benchmarks, can transform prompts that were originally regarded as safe to evade existing safety mechanisms.
arXiv Detail & Related papers (2023-10-16T02:11:20Z) - On the Embedding Collapse when Scaling up Recommendation Models [53.66285358088788]
We identify the embedding collapse phenomenon as the inhibition of scalability, wherein the embedding matrix tends to occupy a low-dimensional subspace.
We propose a simple yet effective multi-embedding design incorporating embedding-set-specific interaction modules to learn embedding sets with large diversity.
arXiv Detail & Related papers (2023-10-06T17:50:38Z) - Sparse Linear Concept Discovery Models [11.138948381367133]
Concept Bottleneck Models (CBMs) constitute a popular approach where hidden layers are tied to human understandable concepts.
We propose a simple yet highly intuitive interpretable framework based on Contrastive Language Image models and a single sparse linear layer.
We experimentally show, our framework not only outperforms recent CBM approaches accuracy-wise, but it also yields high per example concept sparsity.
arXiv Detail & Related papers (2023-08-21T15:16:19Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.