論文の概要: EIoU-EMC: A Novel Loss for Domain-specific Nested Entity Recognition
- arxiv url: http://arxiv.org/abs/2504.14203v1
- Date: Sat, 19 Apr 2025 06:31:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 04:20:13.308745
- Title: EIoU-EMC: A Novel Loss for Domain-specific Nested Entity Recognition
- Title(参考訳): EIoU-EMC: ドメイン固有のNested Entity Recognitionの新しい損失
- Authors: Jian Zhang, Tianqing Zhang, Qi Li, Hongwei Wang,
- Abstract要約: 本研究では,新たな損失EIoU-EMCを設計し,ユニオン損失とマルチクラス損失に対するインターセクションの実装を強化した。
提案手法は,エンティティ境界情報とエンティティ分類情報を特に活用することにより,限られたデータサンプルから学習するモデルの能力を向上させる。
- 参考スコア(独自算出の注目度): 11.490049645011842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, research has mainly focused on the general NER task. There still have some challenges with nested NER task in the specific domains. Specifically, the scenarios of low resource and class imbalance impede the wide application for biomedical and industrial domains. In this study, we design a novel loss EIoU-EMC, by enhancing the implement of Intersection over Union loss and Multiclass loss. Our proposed method specially leverages the information of entity boundary and entity classification, thereby enhancing the model's capacity to learn from a limited number of data samples. To validate the performance of this innovative method in enhancing NER task, we conducted experiments on three distinct biomedical NER datasets and one dataset constructed by ourselves from industrial complex equipment maintenance documents. Comparing to strong baselines, our method demonstrates the competitive performance across all datasets. During the experimental analysis, our proposed method exhibits significant advancements in entity boundary recognition and entity classification. Our code are available here.
- Abstract(参考訳): 近年,NERの一般的な課題を中心に研究が進められている。
特定のドメインでネストされたNERタスクには、まだいくつかの課題がある。
特に、低資源とクラス不均衡のシナリオは、バイオメディカルおよび産業領域への広範な適用を妨げる。
本研究では,新たな損失EIoU-EMCを設計し,ユニオン損失とマルチクラス損失に対するインターセクションの実装を強化した。
提案手法は,エンティティ境界情報とエンティティ分類情報を特に活用することにより,限られたデータサンプルから学習するモデルの能力を向上させる。
NERタスクの強化におけるこの革新的な手法の有効性を検証するため,産業用複合機器保守文書から構築した3つの異なるバイオメディカルNERデータセットと1つのデータセットについて実験を行った。
本手法は,強いベースラインと比較して,全データセット間の競合性能を示す。
実験分析において,提案手法は実体境界認識と実体分類の大幅な進歩を示す。
私たちのコードはここにある。
関連論文リスト
- Generate to Discriminate: Expert Routing for Continual Learning [59.71853576559306]
Generate to Discriminate (G2D) は、合成データを利用してドメイン識別器を訓練する連続学習手法である。
我々は、G2Dが視覚と言語の両方におけるタスクにおいて、競争力のあるドメイン・インクリメンタル・ラーニング手法より優れていることを観察する。
論文 参考訳(メタデータ) (2024-12-22T13:16:28Z) - An Experimental Study on Data Augmentation Techniques for Named Entity Recognition on Low-Resource Domains [0.9903198600681908]
広範に使われている2つのNERモデル(Bi-LSTM+CRFとBERT)において、メンション・リプレースメントとコンテキスト・ワード・リプレースメントという2つの顕著なテキスト拡張手法の有効性を評価する。
低リソース領域からの4つのデータセットについて実験を行い、トレーニングサブセットサイズと拡張例の数による様々な組み合わせの影響について検討する。
論文 参考訳(メタデータ) (2024-11-21T19:45:48Z) - Anomaly Multi-classification in Industrial Scenarios: Transferring Few-shot Learning to a New Task [14.949274810807477]
本稿では,異常多型化という,新規で価値のある研究課題を提案する。
このタスクに数発の学習を適用する上での課題として,RelationNetとPatchCoreを組み合わせたベースラインモデルを導入する。
本稿では,擬似クラスとそれに対応するプロキシタスクを生成するデータ生成手法を提案する。
論文 参考訳(メタデータ) (2024-06-09T05:07:39Z) - MultiADE: A Multi-domain Benchmark for Adverse Drug Event Extraction [11.458594744457521]
アクティブな有害事象監視は、異なるデータソースからの逆薬物イベント(ADE)を監視する。
ほとんどのデータセットや共有タスクは、特定のタイプのテキストからADEを抽出することに焦点を当てている。
ドメインの一般化 - 新しい、目に見えないドメイン(テキストタイプ)でうまく機能する機械学習モデルの能力は、まだ解明されていない。
我々はMultiADEと名づけた有害薬物イベント抽出のためのベンチマークを構築した。
論文 参考訳(メタデータ) (2024-05-28T09:57:28Z) - Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark [101.23684938489413]
異常検出(AD)は、しばしば産業品質検査や医学的病変検査のための異常の検出に焦点が当てられている。
この研究はまず、COCOをADフィールドに拡張することにより、大規模で汎用的なCOCO-ADデータセットを構築する。
セグメンテーション分野のメトリクスにインスパイアされた我々は、より実用的なしきい値に依存したAD固有のメトリクスをいくつか提案する。
論文 参考訳(メタデータ) (2024-04-16T17:38:26Z) - Multi-Label Continual Learning for the Medical Domain: A Novel Benchmark [47.52603262576663]
一つのフレームワークにおける新しいクラス到着とドメインシフトの課題を組み合わせた新しいベンチマークを提案する。
本ベンチマークは,医療画像における多ラベル分類問題に対する現実的なCL設定をモデル化することを目的とする。
論文 参考訳(メタデータ) (2024-04-10T09:35:36Z) - On Task-personalized Multimodal Few-shot Learning for Visually-rich
Document Entity Retrieval [59.25292920967197]
VDER(Few-shot document entity search)は、NLPアプリケーションにおいて重要なトピックである。
FewVEXは、エンティティレベルの少数ショットVDERの分野における将来の研究を促進するための、新しいデータセットである。
本稿では,タスクパーソナライズを効果的に実現することを中心に,タスク認識型メタラーニングベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-01T17:51:43Z) - Inspire the Large Language Model by External Knowledge on BioMedical
Named Entity Recognition [3.427366431933441]
大規模言語モデル(LLM)は多くのNLPタスク、特に生成タスクにおいて支配的な性能を示す。
LLMを利用して、バイオメディカルNERタスクをエンティティスパン抽出とエンティティタイプ決定に分解する。
実験の結果,2段階のBioNERアプローチでは,以前の数発のLDMベースラインと比較して有意な改善が見られた。
論文 参考訳(メタデータ) (2023-09-21T17:39:53Z) - Exploiting Multimodal Synthetic Data for Egocentric Human-Object
Interaction Detection in an Industrial Scenario [14.188006024550257]
EgoISM-HOIは,手や物体のアノテーションが豊富な産業環境下で合成されたEHOI画像からなる,新しいマルチモーダルデータセットである。
本研究は,提案手法を事前学習するために合成データを活用することにより,実世界のデータでテストした場合の性能が著しく向上することを示す。
この分野での研究を支援するため、私たちはデータセット、ソースコード、事前トレーニングされたモデルをhttps://iplab.dmi.unict.it/egoism-hoi.comで公開しています。
論文 参考訳(メタデータ) (2023-06-21T09:56:55Z) - Recent Few-Shot Object Detection Algorithms: A Survey with Performance
Comparison [54.357707168883024]
Few-Shot Object Detection (FSOD)は、人間の学習能力を模倣する。
FSODは、学習した汎用オブジェクトの知識を共通のヘビーテールから新しいロングテールオブジェクトクラスにインテリジェントに転送する。
本稿では,問題定義,共通データセット,評価プロトコルなどを含むFSODの概要を紹介する。
論文 参考訳(メタデータ) (2022-03-27T04:11:28Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - Novel Human-Object Interaction Detection via Adversarial Domain
Generalization [103.55143362926388]
本研究では,新たな人-物間相互作用(HOI)検出の問題点を考察し,モデルの一般化能力を向上させることを目的とした。
この課題は、主に対象と述語の大きな構成空間に起因し、全ての対象と述語の組み合わせに対する十分な訓練データが欠如している。
本稿では,予測のためのオブジェクト指向不変の特徴を学習するために,対数領域の一般化の統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2020-05-22T22:02:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。