Unconstrained Monotonic Calibration of Predictions in Deep Ranking Systems
- URL: http://arxiv.org/abs/2504.14243v1
- Date: Sat, 19 Apr 2025 09:35:11 GMT
- Title: Unconstrained Monotonic Calibration of Predictions in Deep Ranking Systems
- Authors: Yimeng Bai, Shunyu Zhang, Yang Zhang, Hu Liu, Wentian Bao, Enyun Yu, Fuli Feng, Wenwu Ou,
- Abstract summary: A ranking model's absolute values are essential for certain downstream tasks.<n>Existing calibration approaches typically employ predefined transformation functions with order-preserving properties to adjust the original predictions.<n>We propose implementing a calibrator using an Unconstrained Monotonic Neural Network (UMNN), which can learn arbitrary monotonic functions.<n>This approach significantly relaxes the constraints on the calibrator, improving its flexibility and expressiveness while avoiding excessively distorting the original predictions.
- Score: 29.90543561470141
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ranking models primarily focus on modeling the relative order of predictions while often neglecting the significance of the accuracy of their absolute values. However, accurate absolute values are essential for certain downstream tasks, necessitating the calibration of the original predictions. To address this, existing calibration approaches typically employ predefined transformation functions with order-preserving properties to adjust the original predictions. Unfortunately, these functions often adhere to fixed forms, such as piece-wise linear functions, which exhibit limited expressiveness and flexibility, thereby constraining their effectiveness in complex calibration scenarios. To mitigate this issue, we propose implementing a calibrator using an Unconstrained Monotonic Neural Network (UMNN), which can learn arbitrary monotonic functions with great modeling power. This approach significantly relaxes the constraints on the calibrator, improving its flexibility and expressiveness while avoiding excessively distorting the original predictions by requiring monotonicity. Furthermore, to optimize this highly flexible network for calibration, we introduce a novel additional loss function termed Smooth Calibration Loss (SCLoss), which aims to fulfill a necessary condition for achieving the ideal calibration state. Extensive offline experiments confirm the effectiveness of our method in achieving superior calibration performance. Moreover, deployment in Kuaishou's large-scale online video ranking system demonstrates that the method's calibration improvements translate into enhanced business metrics. The source code is available at https://github.com/baiyimeng/UMC.
Related papers
- Calibrating Deep Neural Network using Euclidean Distance [5.675312975435121]
In machine learning, Focal Loss is commonly used to reduce misclassification rates by emphasizing hard-to-classify samples.
High calibration error indicates a misalignment between predicted probabilities and actual outcomes, affecting model reliability.
This research introduces a novel loss function called Focal Loss (FCL), designed to improve probability calibration while retaining the advantages of Focal Loss in handling difficult samples.
arXiv Detail & Related papers (2024-10-23T23:06:50Z) - Feature Clipping for Uncertainty Calibration [24.465567005078135]
Modern deep neural networks (DNNs) often suffer from overconfidence, leading to miscalibration.
We propose a novel post-hoc calibration method called feature clipping (FC) to address this issue.
FC involves clipping feature values to a specified threshold, effectively increasing entropy in high calibration error samples.
arXiv Detail & Related papers (2024-10-16T06:44:35Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
We introduce kernel-based calibration metrics that unify and generalize popular forms of calibration for both classification and regression.
These metrics admit differentiable sample estimates, making it easy to incorporate a calibration objective into empirical risk minimization.
We provide intuitive mechanisms to tailor calibration metrics to a decision task, and enforce accurate loss estimation and no regret decisions.
arXiv Detail & Related papers (2023-10-31T06:19:40Z) - Faster Recalibration of an Online Predictor via Approachability [12.234317585724868]
We introduce a technique for taking an online predictive model which might not be calibrated and transforming its predictions to calibrated predictions without much increase to the loss of the original model.
Our proposed algorithm achieves calibration and accuracy at a faster rate than existing techniques arXiv:1607.03594 and is the first algorithm to offer a flexible tradeoff between calibration error and accuracy in the online setting.
arXiv Detail & Related papers (2023-10-25T20:59:48Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
State-of-the-art approaches for designing calibrated models rely on inflating the Gaussian process posterior variance.
We present a calibration approach that generates predictive quantiles using a computation inspired by the vanilla Gaussian process posterior variance.
Our approach is shown to yield a calibrated model under reasonable assumptions.
arXiv Detail & Related papers (2023-02-23T12:17:36Z) - The Devil is in the Margin: Margin-based Label Smoothing for Network
Calibration [21.63888208442176]
In spite of the dominant performances of deep neural networks, recent works have shown that they are poorly calibrated.
We provide a unifying constrained-optimization perspective of current state-of-the-art calibration losses.
We propose a simple and flexible generalization based on inequality constraints, which imposes a controllable margin on logit distances.
arXiv Detail & Related papers (2021-11-30T14:21:47Z) - Meta-Calibration: Learning of Model Calibration Using Differentiable
Expected Calibration Error [46.12703434199988]
We introduce a new differentiable surrogate for expected calibration error (DECE) that allows calibration quality to be directly optimised.
We also propose a meta-learning framework that uses DECE to optimise for validation set calibration.
arXiv Detail & Related papers (2021-06-17T15:47:50Z) - On the Dark Side of Calibration for Modern Neural Networks [65.83956184145477]
We show the breakdown of expected calibration error (ECE) into predicted confidence and refinement.
We highlight that regularisation based calibration only focuses on naively reducing a model's confidence.
We find that many calibration approaches with the likes of label smoothing, mixup etc. lower the utility of a DNN by degrading its refinement.
arXiv Detail & Related papers (2021-06-17T11:04:14Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
We introduce a novel calibration method, Parametrized Temperature Scaling (PTS)
We demonstrate that the performance of accuracy-preserving state-of-the-art post-hoc calibrators is limited by their intrinsic expressive power.
We show with extensive experiments that our novel accuracy-preserving approach consistently outperforms existing algorithms across a large number of model architectures, datasets and metrics.
arXiv Detail & Related papers (2021-02-24T10:18:30Z) - Post-hoc Calibration of Neural Networks by g-Layers [51.42640515410253]
In recent years, there is a surge of research on neural network calibration.
It is known that minimizing Negative Log-Likelihood (NLL) will lead to a calibrated network on the training set if the global optimum is attained.
We prove that even though the base network ($f$) does not lead to the global optimum of NLL, by adding additional layers ($g$) and minimizing NLL by optimizing the parameters of $g$ one can obtain a calibrated network.
arXiv Detail & Related papers (2020-06-23T07:55:10Z) - Intra Order-preserving Functions for Calibration of Multi-Class Neural
Networks [54.23874144090228]
A common approach is to learn a post-hoc calibration function that transforms the output of the original network into calibrated confidence scores.
Previous post-hoc calibration techniques work only with simple calibration functions.
We propose a new neural network architecture that represents a class of intra order-preserving functions.
arXiv Detail & Related papers (2020-03-15T12:57:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.