論文の概要: Any Image Restoration via Efficient Spatial-Frequency Degradation Adaptation
- arxiv url: http://arxiv.org/abs/2504.14249v1
- Date: Sat, 19 Apr 2025 09:54:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 03:51:43.242306
- Title: Any Image Restoration via Efficient Spatial-Frequency Degradation Adaptation
- Title(参考訳): 空間周波数劣化適応による画像復元
- Authors: Bin Ren, Eduard Zamfir, Zongwei Wu, Yawei Li, Yidi Li, Danda Pani Paudel, Radu Timofte, Ming-Hsuan Yang, Luc Van Gool, Nicu Sebe,
- Abstract要約: 劣化した画像を1つのモデルで効率的に復元することは、ますます重要になっている。
我々のアプローチはAnyIRと呼ばれ、様々な劣化にまたがる固有の類似性を活用する統一された経路をとっています。
劣化認識と文脈的注意を融合させるため,空間周波数並列融合戦略を提案する。
- 参考スコア(独自算出の注目度): 158.37640586809187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Restoring any degraded image efficiently via just one model has become increasingly significant and impactful, especially with the proliferation of mobile devices. Traditional solutions typically involve training dedicated models per degradation, resulting in inefficiency and redundancy. More recent approaches either introduce additional modules to learn visual prompts, significantly increasing model size, or incorporate cross-modal transfer from large language models trained on vast datasets, adding complexity to the system architecture. In contrast, our approach, termed AnyIR, takes a unified path that leverages inherent similarity across various degradations to enable both efficient and comprehensive restoration through a joint embedding mechanism, without scaling up the model or relying on large language models.Specifically, we examine the sub-latent space of each input, identifying key components and reweighting them first in a gated manner. To fuse the intrinsic degradation awareness and the contextualized attention, a spatial-frequency parallel fusion strategy is proposed for enhancing spatial-aware local-global interactions and enriching the restoration details from the frequency perspective. Extensive benchmarking in the all-in-one restoration setting confirms AnyIR's SOTA performance, reducing model complexity by around 82\% in parameters and 85\% in FLOPs. Our code will be available at our Project page (https://amazingren.github.io/AnyIR/)
- Abstract(参考訳): 劣化した画像を1つのモデルで効率的に復元することは、特にモバイルデバイスの普及によって、ますます重要で影響の大きいものになっている。
従来のソリューションは典型的には、分解ごとに専用モデルをトレーニングし、非効率性と冗長性をもたらす。
より最近のアプローチでは、視覚的なプロンプトを学ぶための追加モジュールを導入するか、モデルのサイズを大幅に拡大するか、巨大なデータセットでトレーニングされた大きな言語モデルからのクロスモーダル転送を組み込むか、システムアーキテクチャに複雑さを追加するかのどちらかだ。
対照的に、AnyIRと呼ばれる我々のアプローチは、様々な劣化にまたがる固有の類似性を活用し、モデルをスケールアップしたり、大きな言語モデルに依存することなく、結合埋め込み機構による効率的かつ包括的な復元を可能にする統一的な経路を採っている。
内在的劣化認識と文脈的注意を融合させるため,空間-認識的局所-グローバル相互作用の強化と周波数視点からの復元詳細の強化を目的として,空間-周波数並列融合戦略を提案する。
All-in-oneリカバリ設定の大規模なベンチマークでは、AnyIRのSOTAパフォーマンスが確認され、パラメータの82倍、FLOPの85倍のモデル複雑性が削減された。
私たちのコードはプロジェクトページ(https://amazingren.github.io/AnyIR/)で公開されます。
関連論文リスト
- An Efficient and Mixed Heterogeneous Model for Image Restoration [71.85124734060665]
現在の主流のアプローチは、CNN、Transformers、Mambasの3つのアーキテクチャパラダイムに基づいている。
混合構造融合に基づく効率的で汎用的なIRモデルであるRestorMixerを提案する。
論文 参考訳(メタデータ) (2025-04-15T08:19:12Z) - Multi-dimensional Visual Prompt Enhanced Image Restoration via Mamba-Transformer Aggregation [4.227991281224256]
本稿では,計算効率を犠牲にすることなく,MambaとTransformerの相補的な利点を十分に活用することを提案する。
マンバの選択的走査機構は空間モデリングに焦点をあて、長距離空間依存のキャプチャを可能にする。
トランスフォーマーの自己保持機構は、画像の空間次元と二次的な成長の重荷を回避し、チャネルモデリングに焦点をあてる。
論文 参考訳(メタデータ) (2024-12-20T12:36:34Z) - Hierarchical Information Flow for Generalized Efficient Image Restoration [108.83750852785582]
画像復元のための階層型情報フロー機構であるHi-IRを提案する。
Hi-IRは、劣化した画像を表す階層的な情報ツリーを3段階にわたって構築する。
7つの共通画像復元タスクにおいて、Hi-IRはその有効性と一般化性を達成する。
論文 参考訳(メタデータ) (2024-11-27T18:30:08Z) - Restore Anything Model via Efficient Degradation Adaptation [129.38475243424563]
RAMは、様々な劣化にまたがる固有の類似性を活用して、効率的で包括的な復元を可能にする統一された経路を取る。
RAMのSOTA性能はRAMのSOTA性能を確認し、トレーニング可能なパラメータで約82%、FLOPで約85%のモデルの複雑さを減少させる。
論文 参考訳(メタデータ) (2024-07-18T10:26:53Z) - Dynamic Pre-training: Towards Efficient and Scalable All-in-One Image Restoration [100.54419875604721]
オールインワン画像復元は、各分解に対してタスク固有の非ジェネリックモデルを持たずに、統一されたモデルで異なるタイプの劣化に対処する。
我々は、オールインワン画像復元タスクのためのエンコーダデコーダ方式で設計されたネットワークの動的ファミリであるDyNetを提案する。
我々のDyNetは、よりバルク化と軽量化をシームレスに切り替えることができるので、効率的なモデルデプロイメントのための柔軟性を提供します。
論文 参考訳(メタデータ) (2024-04-02T17:58:49Z) - Look-Around Before You Leap: High-Frequency Injected Transformer for Image Restoration [46.96362010335177]
本稿では,画像復元のための簡易かつ効果的な高周波インジェクト変換器HITを提案する。
具体的には,機能マップに高頻度の詳細を組み込んだウィンドウワイドインジェクションモジュール(WIM)を設計し,高品質な画像の復元のための信頼性の高い参照を提供する。
さらに,BIMにおけるチャネル次元の計算によって失われる可能性のある空間的関係を維持するために,空間拡張ユニット(SEU)を導入する。
論文 参考訳(メタデータ) (2024-03-30T08:05:00Z) - Multi-Stage Progressive Image Restoration [167.6852235432918]
本稿では、これらの競合する目標を最適にバランスできる新しい相乗的設計を提案する。
本提案では, 劣化した入力の復元関数を段階的に学習する多段階アーキテクチャを提案する。
MPRNetという名前の密接な相互接続型マルチステージアーキテクチャは、10のデータセットに対して強力なパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2021-02-04T18:57:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。