RAMCT: Novel Region-adaptive Multi-channel Tracker with Iterative Tikhonov Regularization for Thermal Infrared Tracking
- URL: http://arxiv.org/abs/2504.14278v1
- Date: Sat, 19 Apr 2025 12:18:36 GMT
- Title: RAMCT: Novel Region-adaptive Multi-channel Tracker with Iterative Tikhonov Regularization for Thermal Infrared Tracking
- Authors: Shang Zhang, Yuke Hou, Guoqiang Gong, Ruoyan Xiong, Yue Zhang,
- Abstract summary: We propose RAMCT, a region-adaptive sparse correlation filter tracker.<n>It integrates multi-channel feature opti-mization with an adaptive regularization strategy.<n>It outperforms other state-of-the-art trackers in terms of accuracy and robustness.
- Score: 10.58716694795395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Correlation filter (CF)-based trackers have gained significant attention for their computational efficiency in thermal infrared (TIR) target tracking. However, ex-isting methods struggle with challenges such as low-resolution imagery, occlu-sion, background clutter, and target deformation, which severely impact tracking performance. To overcome these limitations, we propose RAMCT, a region-adaptive sparse correlation filter tracker that integrates multi-channel feature opti-mization with an adaptive regularization strategy. Firstly, we refine the CF learn-ing process by introducing a spatially adaptive binary mask, which enforces spar-sity in the target region while dynamically suppressing background interference. Secondly, we introduce generalized singular value decomposition (GSVD) and propose a novel GSVD-based region-adaptive iterative Tikhonov regularization method. This enables flexible and robust optimization across multiple feature channels, improving resilience to occlusion and background variations. Thirdly, we propose an online optimization strategy with dynamic discrepancy-based pa-rameter adjustment. This mechanism facilitates real time adaptation to target and background variations, thereby improving tracking accuracy and robustness. Ex-tensive experiments on LSOTB-TIR, PTB-TIR, VOT-TIR2015, and VOT-TIR2017 benchmarks demonstrate that RAMCT outperforms other state-of-the-art trackers in terms of accuracy and robustness.
Related papers
- SMTT: Novel Structured Multi-task Tracking with Graph-Regularized Sparse Representation for Robust Thermal Infrared Target Tracking [8.52497147463548]
Thermal infrared target tracking is crucial in applications such as surveillance, autonomous driving, and military operations.<n>In this paper, we propose a novel tracker, SMTT, which effectively addresses common challenges in thermal infrared imagery.
arXiv Detail & Related papers (2025-04-20T10:56:15Z) - STARS: Sparse Learning Correlation Filter with Spatio-temporal Regularization and Super-resolution Reconstruction for Thermal Infrared Target Tracking [8.52497147463548]
Low resolution of temporal images, along with tracking interference, limits perfor-mance of TIR trackers.<n>We introduce a novel sparse learning-based tracker that incorporates superresolution reconstruction.<n>To the best of our knowledge, STARS is the first to integrate super-resolution methods within a sparse learning-based framework.
arXiv Detail & Related papers (2025-04-20T04:49:52Z) - Optimal Transport Adapter Tuning for Bridging Modality Gaps in Few-Shot Remote Sensing Scene Classification [80.83325513157637]
Few-Shot Remote Sensing Scene Classification (FS-RSSC) presents the challenge of classifying remote sensing images with limited labeled samples.<n>We propose a novel Optimal Transport Adapter Tuning (OTAT) framework aimed at constructing an ideal Platonic representational space.
arXiv Detail & Related papers (2025-03-19T07:04:24Z) - Neural Spatial-Temporal Tensor Representation for Infrared Small Target Detection [3.7038542578642724]
We introduce a Neural-represented spatial-temporal model (NeurSTT) for infrared small target detection.<n>NeurSTT enhances spatial-temporal correlations in background approximation, thereby supporting target detection in an unsupervised manner.<n>Visual and numerical results across various datasets demonstrate that our method outperforms the suboptimal method on $256 times 256$ sequences.
arXiv Detail & Related papers (2024-12-23T05:46:08Z) - ResFlow: Fine-tuning Residual Optical Flow for Event-based High Temporal Resolution Motion Estimation [50.80115710105251]
Event cameras hold significant promise for high-temporal-resolution (HTR) motion estimation.
We propose a residual-based paradigm for estimating HTR optical flow with event data.
arXiv Detail & Related papers (2024-12-12T09:35:47Z) - SLAIM: Robust Dense Neural SLAM for Online Tracking and Mapping [15.63276368052395]
We propose a novel coarse-to-fine tracking model tailored for Neural Radiance Field SLAM (NeRF-SLAM)
Existing NeRF-SLAM systems consistently exhibit inferior tracking performance compared to traditional SLAM algorithms.
We implement both local and global bundle-adjustment to produce a robust (coarse-to-fine) and accurate (KL regularizer) SLAM solution.
arXiv Detail & Related papers (2024-04-17T14:23:28Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Unified Single-Stage Transformer Network for Efficient RGB-T Tracking [47.88113335927079]
We propose a single-stage Transformer RGB-T tracking network, namely USTrack, which unifies the above three stages into a single ViT (Vision Transformer) backbone.
With this structure, the network can extract fusion features of the template and search region under the mutual interaction of modalities.
Experiments on three popular RGB-T tracking benchmarks demonstrate that our method achieves new state-of-the-art performance while maintaining the fastest inference speed 84.2FPS.
arXiv Detail & Related papers (2023-08-26T05:09:57Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
We propose a framework, called BALLET, which adaptively filters for a high-confidence region of interest.
We show theoretically that BALLET can efficiently shrink the search space, and can exhibit a tighter regret bound than standard BO.
arXiv Detail & Related papers (2023-07-25T09:45:47Z) - SRRT: Exploring Search Region Regulation for Visual Object Tracking [58.68120400180216]
We propose a novel tracking paradigm, called Search Region Regulation Tracking (SRRT)
SRRT applies a proposed search region regulator to estimate an optimal search region dynamically for each frame.
On the large-scale LaSOT benchmark, SRRT improves SiamRPN++ and TransT with absolute gains of 4.6% and 3.1% in terms of AUC.
arXiv Detail & Related papers (2022-07-10T11:18:26Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.