論文の概要: Manipulating Multimodal Agents via Cross-Modal Prompt Injection
- arxiv url: http://arxiv.org/abs/2504.14348v3
- Date: Fri, 25 Apr 2025 09:46:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.690413
- Title: Manipulating Multimodal Agents via Cross-Modal Prompt Injection
- Title(参考訳): クロスモーダルプロンプト注入によるマルチモーダルエージェントの操作
- Authors: Le Wang, Zonghao Ying, Tianyuan Zhang, Siyuan Liang, Shengshan Hu, Mingchuan Zhang, Aishan Liu, Xianglong Liu,
- Abstract要約: マルチモーダルエージェントにおいて、これまで見過ごされていた重要なセキュリティ脆弱性を特定します。
攻撃者が複数のモードにまたがって敵の摂動を埋め込む新たな攻撃フレームワークであるCrossInjectを提案する。
提案手法は既存のインジェクション攻撃よりも優れており,攻撃成功率が少なくとも26.4%向上している。
- 参考スコア(独自算出の注目度): 34.35145839873915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of multimodal large language models has redefined the agent paradigm by integrating language and vision modalities with external data sources, enabling agents to better interpret human instructions and execute increasingly complex tasks. However, in this work, we identify a critical yet previously overlooked security vulnerability in multimodal agents: cross-modal prompt injection attacks. To exploit this vulnerability, we propose CrossInject, a novel attack framework in which attackers embed adversarial perturbations across multiple modalities to align with target malicious content, allowing external instructions to hijack the agent's decision-making process and execute unauthorized tasks. Our approach consists of two key components. First, we introduce Visual Latent Alignment, where we optimize adversarial features to the malicious instructions in the visual embedding space based on a text-to-image generative model, ensuring that adversarial images subtly encode cues for malicious task execution. Subsequently, we present Textual Guidance Enhancement, where a large language model is leveraged to infer the black-box defensive system prompt through adversarial meta prompting and generate an malicious textual command that steers the agent's output toward better compliance with attackers' requests. Extensive experiments demonstrate that our method outperforms existing injection attacks, achieving at least a +26.4% increase in attack success rates across diverse tasks. Furthermore, we validate our attack's effectiveness in real-world multimodal autonomous agents, highlighting its potential implications for safety-critical applications.
- Abstract(参考訳): マルチモーダルな大規模言語モデルの出現は、言語と視覚のモダリティを外部データソースと統合することでエージェントパラダイムを再定義し、エージェントが人間の指示をよりよく解釈し、ますます複雑なタスクを実行することを可能にする。
しかし、本稿では、マルチモーダルエージェントのセキュリティ脆弱性として、クロスモーダルインジェクション攻撃(cross-modal prompt injection attack)が指摘されている。
この脆弱性を悪用するため、CrossInjectは、攻撃者がターゲットの悪意のあるコンテンツと整合するために、複数のモードにわたって敵の摂動を埋め込んで、外部命令がエージェントの意思決定プロセスをハイジャックし、不正なタスクを実行する、新たな攻撃フレームワークを提案する。
このアプローチは2つの重要なコンポーネントで構成されています。
まず、テキストから画像への生成モデルに基づいて、視覚埋め込み空間の悪意ある命令に対して、敵対的特徴を最適化し、悪意のあるタスク実行のために、敵対的画像がサブコード化されることを保証するVisual Latent Alignmentを導入する。
次に、大規模言語モデルを用いて、敵のメタプロンプトを通じてブラックボックス防御システムを推し進め、攻撃者の要求に適合するようにエージェントの出力を判断する悪意のあるテキストコマンドを生成する。
大規模な実験により,本手法は既存のインジェクション攻撃より優れており,様々なタスクにおける攻撃成功率が少なくとも26.4%向上していることが示された。
さらに、実世界のマルチモーダル自律エージェントにおける攻撃の有効性を検証する。
関連論文リスト
- Tit-for-Tat: Safeguarding Large Vision-Language Models Against Jailbreak Attacks via Adversarial Defense [90.71884758066042]
大きな視覚言語モデル(LVLM)は、視覚入力による悪意のある攻撃に対する感受性という、ユニークな脆弱性を導入している。
本稿では,脆弱性発生源からアクティブ防衛機構へ視覚空間を変換するための新しい手法であるESIIIを提案する。
論文 参考訳(メタデータ) (2025-03-14T17:39:45Z) - The Task Shield: Enforcing Task Alignment to Defend Against Indirect Prompt Injection in LLM Agents [6.829628038851487]
大きな言語モデル(LLM)エージェントは、ツール統合を通じて複雑な現実世界のタスクを実行できる対話アシスタントとして、ますます多くデプロイされている。
特に間接的なプロンプトインジェクション攻撃は、外部データソースに埋め込まれた悪意のある命令が、エージェントを操作してユーザの意図を逸脱させる、重大な脅威となる。
我々は,エージェントのセキュリティが有害な行為を防止し,タスクアライメントを確保するためには,すべてのエージェントアクションをユーザ目的に役立てる必要がある,という新たな視点を提案する。
論文 参考訳(メタデータ) (2024-12-21T16:17:48Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
大型言語モデル(LLM)は、エンボディドインテリジェンスの発展に変化をもたらした。
本稿では,このプロセスにおけるバックドアセキュリティの重大な脅威を明らかにする。
ほんの少しの文脈的デモンストレーションを毒殺しただけで、攻撃者はブラックボックスLDMの文脈的環境を隠蔽することができる。
論文 参考訳(メタデータ) (2024-08-06T01:20:12Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
我々は、VisualWebArena上に現実的な脅威モデルを用いて、200の敵タスクと評価スクリプトを手動で作成する。
我々は,クロボックスフロンティアLMを用いた最新のエージェントを,リフレクションやツリーサーチを行うエージェントを含む,壊すことに成功している。
AREを使用して、新しいコンポーネントの追加に伴うロバスト性の変化を厳格に評価しています。
論文 参考訳(メタデータ) (2024-06-18T17:32:48Z) - Learning diverse attacks on large language models for robust red-teaming and safety tuning [126.32539952157083]
レッドチーム、あるいは有害な応答を誘発するプロンプトの特定は、大きな言語モデルの安全なデプロイを保証するための重要なステップである。
新規性と多様性を優先する明確な規則化であっても、既存のアプローチはモード崩壊または効果的な攻撃を発生させることができないことを示す。
我々は,GFlowNetの微調整と二次平滑化フェーズを用いて,多種多様な効果的な攻撃プロンプトを生成するために攻撃モデルを訓練することを提案する。
論文 参考訳(メタデータ) (2024-05-28T19:16:17Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
本稿では,テキストと画像のモダリティを併用して,大規模視覚言語モデルにおけるより広範な脆弱性のスペクトルを利用する,より包括的戦略を提案する。
本手法は,テキスト入力がない場合に,逆画像プレフィックスをランダムノイズから最適化し,有害な応答を多様に生成することから始める。
様々な有害な指示に対する肯定的な反応を誘発する確率を最大化するために、対向テキスト接頭辞を、対向画像接頭辞と統合し、共最適化する。
論文 参考訳(メタデータ) (2024-05-28T07:13:30Z) - Multi-granular Adversarial Attacks against Black-box Neural Ranking Models [111.58315434849047]
多粒性摂動を取り入れた高品質な逆数例を作成する。
我々は,多粒体攻撃を逐次的意思決定プロセスに変換する。
本手法は,攻撃の有効性と非受容性の両方において,一般的なベースラインを超えている。
論文 参考訳(メタデータ) (2024-04-02T02:08:29Z) - Revealing Vulnerabilities in Stable Diffusion via Targeted Attacks [41.531913152661296]
本稿では,安定拡散に対する標的対向攻撃の問題を定式化し,対向的プロンプトを生成するための枠組みを提案する。
具体的には、安定した拡散を誘導し、特定の画像を生成するための信頼性の高い逆プロンプトを構築するために、勾配に基づく埋め込み最適化を設計する。
逆方向のプロンプトを成功させた後、モデルの脆弱性を引き起こすメカニズムを明らかにする。
論文 参考訳(メタデータ) (2024-01-16T12:15:39Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。