Accelerating LLM Inference with Flexible N:M Sparsity via A Fully Digital Compute-in-Memory Accelerator
- URL: http://arxiv.org/abs/2504.14365v1
- Date: Sat, 19 Apr 2025 17:47:01 GMT
- Title: Accelerating LLM Inference with Flexible N:M Sparsity via A Fully Digital Compute-in-Memory Accelerator
- Authors: Akshat Ramachandran, Souvik Kundu, Arnab Raha, Shamik Kundu, Deepak K. Mathaikutty, Tushar Krishna,
- Abstract summary: Large language model (LLM) pruning with fixed N:M structured sparsity limits the expressivity of the sparse model.<n>We present a flexible layer-wise outlier-density-aware N:M sparsity (FLOW) selection method.<n>We then introduce a flexible, low-overhead digital compute-in-memory architecture (FlexCiM)
- Score: 5.985414012866983
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language model (LLM) pruning with fixed N:M structured sparsity significantly limits the expressivity of the sparse model, yielding sub-optimal performance. In contrast, supporting multiple N:M patterns to provide sparse representational freedom introduces costly overhead in hardware. To address these challenges for LLMs, we first present a flexible layer-wise outlier-density-aware N:M sparsity (FLOW) selection method. FLOW enables the identification of optimal layer-wise N and M values (from a given range) by simultaneously accounting for the presence and distribution of outliers, allowing a higher degree of representational freedom. To deploy sparse models with such N:M flexibility, we then introduce a flexible, low-overhead digital compute-in-memory architecture (FlexCiM). FlexCiM supports diverse sparsity patterns by partitioning a digital CiM (DCiM) macro into smaller sub-macros, which are adaptively aggregated and disaggregated through distribution and merging mechanisms for different N and M values. Extensive experiments on both transformer-based and recurrence-based state space foundation models (SSMs) demonstrate that FLOW outperforms existing alternatives with an accuracy improvement of up to 36%, while FlexCiM achieves up to 1.75x lower inference latency and 1.5x lower energy consumption compared to existing sparse accelerators. Code is available at: https://github.com/FLOW-open-project/FLOW
Related papers
- ElasticMM: Efficient Multimodal LLMs Serving with Elastic Multimodal Parallelism [9.93378263858092]
Multimodal large language models (MLLMs) handle images, videos, and audio by incorporating feature extractors and projection modules.<n>Current tightly coupled serving architectures struggle to distinguish between mixed request types.<n>We propose Elastic Multimodal Parallelism (EMP), a new serving paradigm that elastically adapts to resource heterogeneity.
arXiv Detail & Related papers (2025-07-14T08:53:48Z) - Flexiffusion: Training-Free Segment-Wise Neural Architecture Search for Efficient Diffusion Models [50.260693393896716]
Diffusion models (DMs) are powerful generative models capable of producing high-fidelity images but constrained by high computational costs.<n>We propose Flexiffusion, a training-free NAS framework that jointly optimize generation schedules and model architectures without modifying pre-trained parameters.<n>Our work pioneers a resource-efficient paradigm for searching high-speed DMs without sacrificing quality.
arXiv Detail & Related papers (2025-06-03T06:02:50Z) - Accelerating Diffusion LLMs via Adaptive Parallel Decoding [50.9948753314669]
We introduce adaptive parallel decoding (APD), a novel method that dynamically adjusts the number of tokens sampled in parallel.<n>APD provides markedly higher throughput with minimal quality degradations on downstream benchmarks.
arXiv Detail & Related papers (2025-05-31T06:10:10Z) - FlexQuant: A Flexible and Efficient Dynamic Precision Switching Framework for LLM Quantization [18.041828697950812]
We propose FlexQuant, a dynamic precision-switching framework to optimize the trade-off between inference speed and accuracy.<n>Our work provides a comprehensive analysis of quantization strategies, introduces a precision requirement model for optimal switching, and implements efficient fine-grained precision management.<n> Experimental results demonstrate that FlexQuant achieves a 1.3x end-to-end speedup across diverse language tasks with negligible accuracy loss.
arXiv Detail & Related papers (2025-05-21T07:42:53Z) - LLM Braces: Straightening Out LLM Predictions with Relevant Sub-Updates [27.022532404557264]
We propose LLMBRACES, a method that computes relevance scores associated with value vectors in FFN layers.<n>By optimizing sub-update contributions, LLMBRACES refines the prediction process, leading to more accurate and reliable outputs.<n>LLMBRACES excels in sentiment-controlled generation and toxicity reduction, highlighting its potential for flexible, controlled text generation across applications.
arXiv Detail & Related papers (2025-03-20T16:55:26Z) - Tackling the Dynamicity in a Production LLM Serving System with SOTA Optimizations via Hybrid Prefill/Decode/Verify Scheduling on Efficient Meta-kernels [12.77187564450236]
We introduce XY-Serve, a versatile, Ascend native, end-to-end production large language model (LLM) serving system.<n>The core idea is an abstraction mechanism that smooths out the workload variability by decomposing computations into fine-grained meta primitives.<n>For GEMM, we introduce a virtual padding scheme that adapts to dynamic shape changes while using highly efficient GEMM primitives with assorted fixed tile sizes.
arXiv Detail & Related papers (2024-12-24T02:27:44Z) - SWIFT: On-the-Fly Self-Speculative Decoding for LLM Inference Acceleration [10.970637831760136]
Speculative decoding (SD) has emerged as a widely used paradigm to accelerate LLM inference without compromising quality.<n>We introduce SWIFT, an on-the-fly self-speculative decoding algorithm that adaptively selects intermediate layers of LLMs to skip during inference.<n>Our experiments demonstrate that SWIFT can achieve over a 1.3x-1.6x speedup while preserving the original distribution of the generated text.
arXiv Detail & Related papers (2024-10-09T14:15:30Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Fast Matrix Multiplications for Lookup Table-Quantized LLMs [58.11584672945781]
FLUTE is a flexible lookup table engine for LUT-quantized LLMs.<n>At batch sizes 32 and quantization group size of 128, the FLUTE kernel can be 2-4x faster than existing GEMM kernels.
arXiv Detail & Related papers (2024-07-15T17:55:42Z) - Cloud-Device Collaborative Learning for Multimodal Large Language Models [24.65882336700547]
We introduce a Cloud-Device Collaborative Continual Adaptation framework to enhance the performance of compressed, device-deployed MLLMs.
Our framework is structured into three key components: a device-to-cloud uplink for efficient data transmission, cloud-based knowledge adaptation, and an optimized cloud-to-device downlink for model deployment.
arXiv Detail & Related papers (2023-12-26T18:46:14Z) - Modality Plug-and-Play: Elastic Modality Adaptation in Multimodal LLMs
for Embodied AI [10.82017289243097]
Large Language Models (LLMs) are capable of reasoning over diverse input data modalities through pre-trained encoders.
m-LLM improves the task accuracy by up to 4% compared to the best existing scheme.
arXiv Detail & Related papers (2023-12-13T04:08:59Z) - MatFormer: Nested Transformer for Elastic Inference [91.45687988953435]
MatFormer is a novel Transformer architecture designed to provide elastic inference across diverse deployment constraints.<n>MatFormer achieves this by incorporating a nested Feed Forward Network (FFN) block structure within a standard Transformer model.<n>We show that a 850M decoder-only MatFormer language model (MatLM) allows us to extract multiple smaller models spanning from 582M to 850M parameters.
arXiv Detail & Related papers (2023-10-11T17:57:14Z) - Can SAM Boost Video Super-Resolution? [78.29033914169025]
We propose a simple yet effective module -- SAM-guidEd refinEment Module (SEEM)
This light-weight plug-in module is specifically designed to leverage the attention mechanism for the generation of semantic-aware feature.
We apply our SEEM to two representative methods, EDVR and BasicVSR, resulting in consistently improved performance with minimal implementation effort.
arXiv Detail & Related papers (2023-05-11T02:02:53Z) - SWEM: Towards Real-Time Video Object Segmentation with Sequential
Weighted Expectation-Maximization [36.43412404616356]
We propose a novel Sequential Weighted Expectation-Maximization (SWEM) network to greatly reduce the redundancy of memory features.
SWEM combines intra-frame and inter-frame similar features by leveraging the sequential weighted EM algorithm.
Experiments on commonly used DAVIS and YouTube-VOS datasets verify the high efficiency (36 FPS) and high performance (84.3% $mathcalJ&mathcalF$ on DAVIS 2017 validation dataset)
arXiv Detail & Related papers (2022-08-22T08:03:59Z) - SlimFL: Federated Learning with Superposition Coding over Slimmable
Neural Networks [56.68149211499535]
Federated learning (FL) is a key enabler for efficient communication and computing leveraging devices' distributed computing capabilities.
This paper proposes a novel learning framework by integrating FL and width-adjustable slimmable neural networks (SNNs)
We propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models.
arXiv Detail & Related papers (2022-03-26T15:06:13Z) - Joint Superposition Coding and Training for Federated Learning over
Multi-Width Neural Networks [52.93232352968347]
This paper aims to integrate two synergetic technologies, federated learning (FL) and width-adjustable slimmable neural network (SNN)
FL preserves data privacy by exchanging the locally trained models of mobile devices. SNNs are however non-trivial, particularly under wireless connections with time-varying channel conditions.
We propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models.
arXiv Detail & Related papers (2021-12-05T11:17:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.