Flexiffusion: Training-Free Segment-Wise Neural Architecture Search for Efficient Diffusion Models
- URL: http://arxiv.org/abs/2506.02488v2
- Date: Wed, 04 Jun 2025 23:47:53 GMT
- Title: Flexiffusion: Training-Free Segment-Wise Neural Architecture Search for Efficient Diffusion Models
- Authors: Hongtao Huang, Xiaojun Chang, Lina Yao,
- Abstract summary: Diffusion models (DMs) are powerful generative models capable of producing high-fidelity images but constrained by high computational costs.<n>We propose Flexiffusion, a training-free NAS framework that jointly optimize generation schedules and model architectures without modifying pre-trained parameters.<n>Our work pioneers a resource-efficient paradigm for searching high-speed DMs without sacrificing quality.
- Score: 50.260693393896716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models (DMs) are powerful generative models capable of producing high-fidelity images but are constrained by high computational costs due to iterative multi-step inference. While Neural Architecture Search (NAS) can optimize DMs, existing methods are hindered by retraining requirements, exponential search complexity from step-wise optimization, and slow evaluation relying on massive image generation. To address these challenges, we propose Flexiffusion, a training-free NAS framework that jointly optimizes generation schedules and model architectures without modifying pre-trained parameters. Our key insight is to decompose the generation process into flexible segments of equal length, where each segment dynamically combines three step types: full (complete computation), partial (cache-reused computation), and null (skipped computation). This segment-wise search space reduces the candidate pool exponentially compared to step-wise NAS while preserving architectural diversity. Further, we introduce relative FID (rFID), a lightweight evaluation metric for NAS that measures divergence from a teacher model's outputs instead of ground truth, slashing evaluation time by over $90\%$. In practice, Flexiffusion achieves at least $2\times$ acceleration across LDMs, Stable Diffusion, and DDPMs on ImageNet and MS-COCO, with FID degradation under $5\%$, outperforming prior NAS and caching methods. Notably, it attains $5.1\times$ speedup on Stable Diffusion with near-identical CLIP scores. Our work pioneers a resource-efficient paradigm for searching high-speed DMs without sacrificing quality.
Related papers
- ZO-DARTS++: An Efficient and Size-Variable Zeroth-Order Neural Architecture Search Algorithm [13.271262526855212]
Differentiable Neural Architecture Search (NAS) provides promising avenue for automating complex design of deep learning (DL) models.<n>We introduce ZO-DARTS++, a novel NAS method that effectively balances performance and resource constraints.<n>In extensive tests on medical imaging datasets, ZO-DARTS++ improves the average accuracy by up to 1.8% over standard DARTS-based methods.
arXiv Detail & Related papers (2025-03-08T06:43:33Z) - POMONAG: Pareto-Optimal Many-Objective Neural Architecture Generator [4.09225917049674]
Transferable NAS has emerged, generalizing the search process from dataset-dependent to task-dependent.
This paper introduces POMONAG, extending DiffusionNAG via a many-optimal diffusion process.
Results were validated on two search spaces -- NAS201 and MobileNetV3 -- and evaluated across 15 image classification datasets.
arXiv Detail & Related papers (2024-09-30T16:05:29Z) - Flexiffusion: Segment-wise Neural Architecture Search for Flexible Denoising Schedule [50.260693393896716]
Diffusion models are cutting-edge generative models adept at producing diverse, high-quality images.
Recent techniques have been employed to automatically search for faster generation processes.
We introduce Flexiffusion, a novel training-free NAS paradigm designed to accelerate diffusion models.
arXiv Detail & Related papers (2024-09-26T06:28:05Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - MGAS: Multi-Granularity Architecture Search for Trade-Off Between Model
Effectiveness and Efficiency [10.641875933652647]
We introduce multi-granularity architecture search (MGAS) to discover both effective and efficient neural networks.
We learn discretization functions specific to each granularity level to adaptively determine the unit remaining ratio according to the evolving architecture.
Extensive experiments on CIFAR-10, CIFAR-100 and ImageNet demonstrate that MGAS outperforms other state-of-the-art methods in achieving a better trade-off between model performance and model size.
arXiv Detail & Related papers (2023-10-23T16:32:18Z) - DiffusionNAG: Predictor-guided Neural Architecture Generation with Diffusion Models [56.584561770857306]
We propose a novel conditional Neural Architecture Generation (NAG) framework based on diffusion models, dubbed DiffusionNAG.
Specifically, we consider the neural architectures as directed graphs and propose a graph diffusion model for generating them.
We validate the effectiveness of DiffusionNAG through extensive experiments in two predictor-based NAS scenarios: Transferable NAS and Bayesian Optimization (BO)-based NAS.
When integrated into a BO-based algorithm, DiffusionNAG outperforms existing BO-based NAS approaches, particularly in the large MobileNetV3 search space on the ImageNet 1K dataset.
arXiv Detail & Related papers (2023-05-26T13:58:18Z) - A Low-Complexity Approach to Rate-Distortion Optimized Variable Bit-Rate
Compression for Split DNN Computing [5.3221129103999125]
Split computing has emerged as a recent paradigm for implementation of DNN-based AI workloads.
We present an approach that addresses the challenge of optimizing the rate-accuracy-complexity trade-off.
Our approach is remarkably lightweight, both during training and inference, highly effective and achieves excellent rate-distortion performance.
arXiv Detail & Related papers (2022-08-24T15:02:11Z) - Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA [58.040931661693925]
We propose a strategy that combines redundant recomputing and out-of-core methods.
We achieve an average of 1.52x speedup in six different models over the state-of-the-art out-of-core methods.
Our data parallel out-of-core solution can outperform complex hybrid model parallelism in training large models, e.g. Megatron-LM and Turning-NLG.
arXiv Detail & Related papers (2020-08-26T07:24:34Z) - DDPNAS: Efficient Neural Architecture Search via Dynamic Distribution
Pruning [135.27931587381596]
We propose an efficient and unified NAS framework termed DDPNAS via dynamic distribution pruning.
In particular, we first sample architectures from a joint categorical distribution. Then the search space is dynamically pruned and its distribution is updated every few epochs.
With the proposed efficient network generation method, we directly obtain the optimal neural architectures on given constraints.
arXiv Detail & Related papers (2019-05-28T06:35:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.