Empirical Evaluation of Knowledge Distillation from Transformers to Subquadratic Language Models
- URL: http://arxiv.org/abs/2504.14366v2
- Date: Sat, 24 May 2025 10:10:16 GMT
- Title: Empirical Evaluation of Knowledge Distillation from Transformers to Subquadratic Language Models
- Authors: Patrick Haller, Jonas Golde, Alan Akbik,
- Abstract summary: We systematically evaluate the transferability of knowledge distillation from a Transformer teacher model to eight subquadratic student architectures.<n>Our study investigates which subquadratic model can most effectively approximate the teacher model's learned representations through knowledge distillation.
- Score: 3.287942619833188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge distillation is a widely used technique for compressing large language models (LLMs), in which a smaller student model is trained to mimic a larger teacher model. Typically, both the teacher and student models are Transformer-based architectures, leveraging softmax attention for sequence modeling. However, the quadratic complexity of self-attention during inference remains a significant bottleneck, motivating the exploration of subquadratic alternatives such as structured state-space models (SSMs), linear attention, and recurrent architectures. In this work, we systematically evaluate the transferability of knowledge distillation from a Transformer teacher model to eight subquadratic student architectures. Our study investigates which subquadratic model can most effectively approximate the teacher model's learned representations through knowledge distillation, and how different architectural design choices influence the training dynamics. We further investigate the impact of initialization strategies, such as matrix mixing and query-key-value (QKV) copying, on the adaptation process. Our empirical results on multiple NLP benchmarks provide insights into the trade-offs between efficiency and performance, highlighting key factors for successful knowledge transfer to subquadratic architectures.
Related papers
- HAD: Hybrid Architecture Distillation Outperforms Teacher in Genomic Sequence Modeling [52.58723853697152]
We propose a Hybrid Architecture Distillation (HAD) approach for DNA sequence modeling.<n>We employ the NTv2-500M as the teacher model and devise a grouping masking strategy.<n>Compared to models with similar parameters, our model achieved excellent performance.
arXiv Detail & Related papers (2025-05-27T07:57:35Z) - Localizing Knowledge in Diffusion Transformers [44.27817967554535]
We propose a model- and knowledge-agnostic method to localize where specific types of knowledge are encoded within the Diffusion Transformer blocks.<n>We show that the identified blocks are both interpretable and causally linked to the expression of knowledge in generated outputs.<n>Our findings offer new insights into the internal structure of DiTs and introduce a practical pathway for more interpretable, efficient, and controllable model editing.
arXiv Detail & Related papers (2025-05-24T19:02:20Z) - Learning from Stochastic Teacher Representations Using Student-Guided Knowledge Distillation [64.15918654558816]
Self-distillation (SSD) training strategy is introduced for filtering and weighting teacher representation to distill from task-relevant representations only.<n> Experimental results on real-world affective computing, wearable/biosignal datasets from the UCR Archive, the HAR dataset, and image classification datasets show that the proposed SSD method can outperform state-of-the-art methods.
arXiv Detail & Related papers (2025-04-19T14:08:56Z) - Feature-based One-For-All: A Universal Framework for Heterogeneous Knowledge Distillation [28.722795943076306]
Knowledge distillation (KD) involves transferring knowledge from a pre-trained heavy teacher model to a lighter student model.<n>We introduce a feature-based one-for-all (FOFA) KD framework to enable feature distillation across diverse architecture.<n>Our framework comprises two key components. First, we design prompt tuning blocks that incorporate student feedback, allowing teacher features to adapt to the student model's learning process.
arXiv Detail & Related papers (2025-01-15T15:56:06Z) - Feature Alignment-Based Knowledge Distillation for Efficient Compression of Large Language Models [4.737806982257592]
This study proposes a knowledge distillation algorithm based on large language models and feature alignment.<n>The proposed model performs very close to the state-of-the-art GPT-4 model in terms of evaluation indicators such as perplexity, BLEU, ROUGE, and CER.
arXiv Detail & Related papers (2024-12-27T04:37:06Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
Knowledge distillation (KD) is a technique that compresses large teacher models by training smaller student models to mimic them.
This paper introduces Online Knowledge Distillation (OKD), where the teacher network integrates small online modules to concurrently train with the student model.
OKD achieves or exceeds the performance of leading methods in various model architectures and sizes, reducing training time by up to fourfold.
arXiv Detail & Related papers (2024-09-19T07:05:26Z) - One-for-All: Bridge the Gap Between Heterogeneous Architectures in
Knowledge Distillation [69.65734716679925]
Knowledge distillation has proven to be a highly effective approach for enhancing model performance through a teacher-student training scheme.
Most existing distillation methods are designed under the assumption that the teacher and student models belong to the same model family.
We propose a simple yet effective one-for-all KD framework called OFA-KD, which significantly improves the distillation performance between heterogeneous architectures.
arXiv Detail & Related papers (2023-10-30T11:13:02Z) - EmbedDistill: A Geometric Knowledge Distillation for Information
Retrieval [83.79667141681418]
Large neural models (such as Transformers) achieve state-of-the-art performance for information retrieval (IR)
We propose a novel distillation approach that leverages the relative geometry among queries and documents learned by the large teacher model.
We show that our approach successfully distills from both dual-encoder (DE) and cross-encoder (CE) teacher models to 1/10th size asymmetric students that can retain 95-97% of the teacher performance.
arXiv Detail & Related papers (2023-01-27T22:04:37Z) - Parameter-Efficient Mixture-of-Experts Architecture for Pre-trained
Language Models [68.9288651177564]
We present a novel MoE architecture based on matrix product operators (MPO) from quantum many-body physics.
With the decomposed MPO structure, we can reduce the parameters of the original MoE architecture.
Experiments on the three well-known downstream natural language datasets based on GPT2 show improved performance and efficiency in increasing model capacity.
arXiv Detail & Related papers (2022-03-02T13:44:49Z) - Weakly Supervised Semantic Segmentation via Alternative Self-Dual
Teaching [82.71578668091914]
This paper establishes a compact learning framework that embeds the classification and mask-refinement components into a unified deep model.
We propose a novel alternative self-dual teaching (ASDT) mechanism to encourage high-quality knowledge interaction.
arXiv Detail & Related papers (2021-12-17T11:56:56Z) - Scene-adaptive Knowledge Distillation for Sequential Recommendation via
Differentiable Architecture Search [19.798931417466456]
Sequential recommender systems (SRS) have become a research hotspot due to its power in modeling user dynamic interests and sequential behavioral patterns.
To maximize model expressive ability, a default choice is to apply a larger and deeper network architecture.
We propose AdaRec, a framework which compresses knowledge of a teacher model into a student model adaptively according to its recommendation scene.
arXiv Detail & Related papers (2021-07-15T07:47:46Z) - GroupBERT: Enhanced Transformer Architecture with Efficient Grouped
Structures [57.46093180685175]
We demonstrate a set of modifications to the structure of a Transformer layer, producing a more efficient architecture.
We add a convolutional module to complement the self-attention module, decoupling the learning of local and global interactions.
We apply the resulting architecture to language representation learning and demonstrate its superior performance compared to BERT models of different scales.
arXiv Detail & Related papers (2021-06-10T15:41:53Z) - Self-Feature Regularization: Self-Feature Distillation Without Teacher
Models [0.0]
Self-Feature Regularization(SFR) is proposed, which uses features in the deep layers to supervise feature learning in the shallow layers.
We firstly use generalization-l2 loss to match local features and a many-to-one approach to distill more intensively in the channel dimension.
arXiv Detail & Related papers (2021-03-12T15:29:00Z) - Reinforced Multi-Teacher Selection for Knowledge Distillation [54.72886763796232]
knowledge distillation is a popular method for model compression.
Current methods assign a fixed weight to a teacher model in the whole distillation.
Most of the existing methods allocate an equal weight to every teacher model.
In this paper, we observe that, due to the complexity of training examples and the differences in student model capability, learning differentially from teacher models can lead to better performance of student models distilled.
arXiv Detail & Related papers (2020-12-11T08:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.