論文の概要: Towards Model Resistant to Transferable Adversarial Examples via Trigger Activation
- arxiv url: http://arxiv.org/abs/2504.14541v1
- Date: Sun, 20 Apr 2025 09:07:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 23:57:10.375125
- Title: Towards Model Resistant to Transferable Adversarial Examples via Trigger Activation
- Title(参考訳): トリガー・アクティベーションによるトランスファー可能な逆数例への抵抗モデルの適用
- Authors: Yi Yu, Song Xia, Xun Lin, Chenqi Kong, Wenhan Yang, Shijian Lu, Yap-Peng Tan, Alex C. Kot,
- Abstract要約: 知覚不能な摂動によって特徴づけられる敵対的な例は、彼らの予測を誤解させることで、ディープニューラルネットワークに重大な脅威をもたらす。
本稿では,移動可能な敵例(TAE)に対して,より効率的かつ効果的に堅牢性を高めることを目的とした,新たなトレーニングパラダイムを提案する。
- 参考スコア(独自算出の注目度): 95.3977252782181
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial examples, characterized by imperceptible perturbations, pose significant threats to deep neural networks by misleading their predictions. A critical aspect of these examples is their transferability, allowing them to deceive {unseen} models in black-box scenarios. Despite the widespread exploration of defense methods, including those on transferability, they show limitations: inefficient deployment, ineffective defense, and degraded performance on clean images. In this work, we introduce a novel training paradigm aimed at enhancing robustness against transferable adversarial examples (TAEs) in a more efficient and effective way. We propose a model that exhibits random guessing behavior when presented with clean data $\boldsymbol{x}$ as input, and generates accurate predictions when with triggered data $\boldsymbol{x}+\boldsymbol{\tau}$. Importantly, the trigger $\boldsymbol{\tau}$ remains constant for all data instances. We refer to these models as \textbf{models with trigger activation}. We are surprised to find that these models exhibit certain robustness against TAEs. Through the consideration of first-order gradients, we provide a theoretical analysis of this robustness. Moreover, through the joint optimization of the learnable trigger and the model, we achieve improved robustness to transferable attacks. Extensive experiments conducted across diverse datasets, evaluating a variety of attacking methods, underscore the effectiveness and superiority of our approach.
- Abstract(参考訳): 知覚不能な摂動によって特徴づけられる敵対的な例は、彼らの予測を誤解させることで、ディープニューラルネットワークに重大な脅威をもたらす。
これらの例の重要な側面は転送可能性であり、ブラックボックスのシナリオで {unseen} モデルを欺くことができる。
移動可能性を含む防衛方法の広範な探索にもかかわらず、これらは非効率な配備、非効率な防御、クリーンな画像における劣化した性能の限界を示す。
本研究では,移動可能な敵例(TAE)に対して,より効率的かつ効果的に堅牢性を高めることを目的とした,新たなトレーニングパラダイムを提案する。
クリーンデータ$\boldsymbol{x}$を入力として提示した場合にランダムな推測挙動を示し、トリガデータ$\boldsymbol{x}+\boldsymbol{\tau}$で正確な予測を生成するモデルを提案する。
重要なのは、すべてのデータインスタンスに対して$\boldsymbol{\tau}$が一定であることだ。
これらのモデルをトリガアクティベーション付きtextbf{models} と呼ぶ。
これらのモデルがTAEに対してある種の堅牢性を示すことに驚きました。
一階勾配を考慮し、このロバスト性の理論解析を行う。
さらに,学習可能なトリガとモデルの共同最適化により,移動可能な攻撃に対する堅牢性を向上する。
多様なデータセットにまたがる大規模な実験を行い、様々な攻撃方法を評価し、我々のアプローチの有効性と優越性を強調した。
関連論文リスト
- Indiscriminate Disruption of Conditional Inference on Multivariate Gaussians [60.22542847840578]
敵対的機械学習の進歩にもかかわらず、敵対者の存在下でのガウスモデルに対する推論は特に過小評価されている。
我々は,意思決定者の条件推論とその後の行動の妨害を希望する自己関心のある攻撃者について,一組の明らかな変数を乱すことで検討する。
検出を避けるため、攻撃者は、破損した証拠の密度によって可否が決定される場合に、攻撃が可否を示すことを望んでいる。
論文 参考訳(メタデータ) (2024-11-21T17:46:55Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
ホワイトボックスの敵攻撃とは対照的に、転送攻撃は現実世界のシナリオをより反映している。
本稿では,SA-Attackと呼ばれる自己拡張型転送攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-12-08T09:08:50Z) - CT-GAT: Cross-Task Generative Adversarial Attack based on
Transferability [24.272384832200522]
本稿では,様々なタスクにまたがる伝達可能な特徴を抽出して,直接対逆例を構築する手法を提案する。
具体的には,複数のタスクから収集した対数サンプルデータを用いて,CT-GATというシーケンス対シーケンス生成モデルを訓練し,普遍的対数特徴を得る。
その結果,本手法は低コストで優れた攻撃性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-10-22T11:00:04Z) - OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks [17.584752814352502]
Evasion Attacks (EA) は、入力データを歪ませることで、トレーニングされたニューラルネットワークの堅牢性をテストするために使用される。
本稿では, 自己教師型, 計算的経済的な手法を用いて, 対逆例を生成する手法を提案する。
我々の実験は、この手法が様々なモデル、目に見えないデータカテゴリ、さらには防御されたモデルで有効であることを一貫して実証している。
論文 参考訳(メタデータ) (2023-10-05T17:34:47Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - Rethinking Model Ensemble in Transfer-based Adversarial Attacks [46.82830479910875]
転送可能性を改善する効果的な戦略は、モデルのアンサンブルを攻撃することである。
これまでの作業は、単に異なるモデルの出力を平均化するだけであった。
我々は、より移動可能な敵の例を生成するために、CWA(Common Weakness Attack)を提案する。
論文 参考訳(メタデータ) (2023-03-16T06:37:16Z) - Defending Variational Autoencoders from Adversarial Attacks with MCMC [74.36233246536459]
変分オートエンコーダ(VAE)は、様々な領域で使用される深部生成モデルである。
以前の研究が示すように、視覚的にわずかに修正された入力に対する予期せぬ潜在表現と再構成を生成するために、VAEを簡単に騙すことができる。
本稿では, 敵攻撃構築のための目的関数について検討し, モデルのロバスト性を評価する指標を提案し, 解決策を提案する。
論文 参考訳(メタデータ) (2022-03-18T13:25:18Z) - Feature Importance-aware Transferable Adversarial Attacks [46.12026564065764]
既存の移動可能な攻撃は、特徴を無差別に歪ませることで敵の例を作る傾向がある。
このようなブルート力の劣化は、モデル固有の局所最適化を敵の例に導入するであろうと論じる。
対照的に、重要なオブジェクト認識機能を妨害する特徴重要度認識攻撃(FIA)を提案する。
論文 参考訳(メタデータ) (2021-07-29T17:13:29Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
深層ニューラルネットワーク(DNN)に対するブラックボックス攻撃の研究
我々は, 代理バイアスに対して頑健な, 対向移動可能性の新たなメカニズムを開発する。
ベンチマークデータセットの実験と実世界のAPIに対する攻撃は、提案手法の優れた攻撃性能を示す。
論文 参考訳(メタデータ) (2020-06-15T16:45:27Z) - Luring of transferable adversarial perturbations in the black-box
paradigm [0.0]
我々は、ブラックボックス転送攻撃に対するモデルの堅牢性を改善するための新しいアプローチを提案する。
除去可能な追加ニューラルネットワークが対象モデルに含まれており、テクスチャリング効果を誘導するように設計されている。
提案手法は,対象モデルの予測にのみアクセス可能であり,ラベル付きデータセットを必要としない。
論文 参考訳(メタデータ) (2020-04-10T06:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。