Photonic Qubit Gates via 1D Scattering from an Array of Two-Level Emitters
- URL: http://arxiv.org/abs/2504.14581v1
- Date: Sun, 20 Apr 2025 12:07:12 GMT
- Title: Photonic Qubit Gates via 1D Scattering from an Array of Two-Level Emitters
- Authors: Evangelos Varvelis, Joachim Ankerhold,
- Abstract summary: Photonic quantum computing offers a promising platform for quantum information processing.<n>This paper presents a scheme for implementing a deterministic phase gate for dual-rail number encoded photonic qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Photonic quantum computing offers a promising platform for quantum information processing, benefiting from the long coherence times of photons and their ease of manipulation. This paper presents a scheme for implementing a deterministic phase gate for dual-rail number encoded photonic qubits, leveraging a standard 1D waveguide coupled to an array of two-level emitters (TLE). Using a transfer matrix approach, we develop a protocol for deterministic phase gate operation, demonstrating its robustness against non-waveguide mode coupling and disorder. Finally, we relax the idealized assumption of monochromatic light, considering finite-bandwidth pulses. Despite these realistic considerations, our results indicate high fidelity for the proposed phase gate protocol. Finally we will discuss two qubit operations.
Related papers
- Deterministic generation of a 20-qubit two-dimensional photonic cluster state [87.34681687753141]
We present a device capable of emitting large-scale entangled microwave photonic states in a two dimensional ladder structure.
By interleaving two-qubit gates with controlled photon emission, we generate 2 x n grids of time- and frequency-multiplexed cluster states of itinerant microwave photons.
We measure a signature of localizable entanglement across up to 20 photonic qubits.
arXiv Detail & Related papers (2024-09-10T16:25:24Z) - Heralded High-Dimensional Photon-Photon Quantum Gate [4.602787223342753]
A major obstacle for realizing quantum gates between two individual photons is the restriction of direct interaction between photons in linear media.
We present a protocol for realizing an entangling gate -- the controlled phase-flip (CPF) gate -- for two photonic qudits in arbitrary dimension.
We experimentally demonstrate this protocol by realizing a four-dimensional qudit-qudit CPF gate, whose decomposition would require at least 13 two-qubit entangling gates.
arXiv Detail & Related papers (2024-07-23T10:00:12Z) - Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Programmable quantum circuits in a large-scale photonic waveguide array [2.784440641237062]
We show the first demonstration of precise control of single photon states on an $11times 11$ continuously-coupled programmable waveguide array.
Our results demonstrate the potential of using this technology as a building block for quantum information processing applications.
arXiv Detail & Related papers (2024-05-22T13:59:32Z) - Subtraction and Addition of Propagating Photons by Two-Level Emitters [2.321156230142032]
We show that a passive two-level nonlinearity suffices to implement non-Gaussian quantum operations on propagating field modes.
We accurately describe the single-photon subtraction process by elements of an intuitive quantum-trajectory model.
arXiv Detail & Related papers (2024-04-18T16:55:33Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Experimental realization of deterministic and selective photon addition in a bosonic mode assisted by an ancillary qubit [33.7054351451505]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.<n>Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.<n>Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Amplification of cascaded downconversion by reusing photons with a
switchable cavity [62.997667081978825]
We propose a scheme to amplify triplet production rates by using a fast switch and a delay loop.
Our proof-of-concept device increases the rate of detected photon triplets as predicted.
arXiv Detail & Related papers (2022-09-23T15:53:44Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Optimal qubit circuits for quantum-enhanced telescopes [0.0]
By using distributed entanglement, it is possible to eliminate the loss of stellar photons during transmission over the baselines.
The first protocol is a sequence of gates using nonlinear optical elements, optimized over all possible measurement schemes to saturate the Cram'er-Rao bound.
The second approach builds on an existing protocol, which encodes the time of arrival of the stellar photon into a quantum memory.
arXiv Detail & Related papers (2021-08-02T21:02:09Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.