Heralded High-Dimensional Photon-Photon Quantum Gate
- URL: http://arxiv.org/abs/2407.16356v1
- Date: Tue, 23 Jul 2024 10:00:12 GMT
- Title: Heralded High-Dimensional Photon-Photon Quantum Gate
- Authors: Zhi-Feng Liu, Zhi-Cheng Ren, Pei Wan, Wen-Zheng Zhu, Zi-Mo Cheng, Jing Wang, Yu-Peng Shi, Han-Bing Xi, Marcus Huber, Nicolai Friis, Xiaoqin Gao, Xi-Lin Wang, Hui-Tian Wang,
- Abstract summary: A major obstacle for realizing quantum gates between two individual photons is the restriction of direct interaction between photons in linear media.
We present a protocol for realizing an entangling gate -- the controlled phase-flip (CPF) gate -- for two photonic qudits in arbitrary dimension.
We experimentally demonstrate this protocol by realizing a four-dimensional qudit-qudit CPF gate, whose decomposition would require at least 13 two-qubit entangling gates.
- Score: 4.602787223342753
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-dimensional encoding of quantum information holds the potential to greatly increase the computational power of existing devices by enlarging the accessible state space for fixed register size and by reducing the number of required entangling gates. However, qudit-based quantum computation remains far less developed than conventional qubit-based approaches, in particular for photons, which represent natural multi-level information carriers that play a crucial role in the development of quantum networks. A major obstacle for realizing quantum gates between two individual photons is the restriction of direct interaction between photons in linear media. In particular, essential logic components for quantum operations such as native qudit-qudit entangling gates are still missing for optical quantum information processing. Here we address this challenge by presenting a protocol for realizing an entangling gate -- the controlled phase-flip (CPF) gate -- for two photonic qudits in arbitrary dimension. We experimentally demonstrate this protocol by realizing a four-dimensional qudit-qudit CPF gate, whose decomposition would require at least 13 two-qubit entangling gates. Our photonic qudits are encoded in orbital angular momentum (OAM) and we have developed a new active high-precision phase-locking technology to construct a high-dimensional OAM beam splitter that increases the stability of the CPF gate, resulting in a process fidelity within a range of $ [0.64 \pm 0.01, 0.82 \pm 0.01]$. Our experiment represents a significant advance for high-dimensional optical quantum information processing and has the potential for wider applications beyond optical system.
Related papers
- Bell state generation and CNOT operation using on-demand identical photons from shape-controlled spatially ordered quantum dots [2.368393320613973]
We develop a platform of mesa-top single quantum dots (MTSQDs) located in designed regular arrays.
A Bell state fidelity of 0.825$pm$0.010 is achieved with two photon interference (TPI) visibility of 0.947$pm$0.0015 at 4K without Purcell enhancement.
arXiv Detail & Related papers (2024-11-07T04:04:11Z) - High-Dimensional Two-Photon Quantum Controlled Phase-Flip Gate [1.0660502023086995]
We propose to the best of our knowledge the first high-dimensional, deterministic and universal two-photon quantum gate.
By using an optical cavity embedded with a single trapped 40Ca+ ion, we achieve a high average fidelity larger than 98%.
Our proposed system can be an essential building block for high-dimensional quantum information processing, and also provides a platform for studying high-dimensional cavity QED.
arXiv Detail & Related papers (2024-04-23T01:58:43Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - A chip-scale polarization-spatial-momentum quantum SWAP gate in silicon
nanophotonics [7.963795592239752]
integrated quantum photonics increases the level of scaling complexity.
We demonstrate an efficient SWAP gate that swaps a photon's polarization qubit with its spatial-momentum qubit on a nanofabricated two-level silicon-photonics chip.
Our gate provides a pathway towards integrated quantum information processing for interconnected modular systems.
arXiv Detail & Related papers (2023-05-16T21:27:11Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Universal quantum multi-qubit entangling gates with auxiliary spaces [0.0]
We present an effective quantum circuit for the implementation of a controlled-NOT (CNOT) gate.
The method is extended to the construction of a general n-control-qubit Toffoli gate with (2n-1) qubit-qudit gates and (2n-2) single-qudit gates.
Based on the presented quantum circuits, the polarization CNOT and Toffoli gates with linear optics are designed by operating on the spatial-mode degree of freedom of photons.
arXiv Detail & Related papers (2021-05-22T03:30:22Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Efficient Generation of Subnatural-Linewidth Biphotons by Controlled
Quantum Interference [0.9877468274612591]
Biphotons of narrow bandwidth and long temporal length play a crucial role in long-distance quantum communication.
By manipulating the two-component biphoton wavefunction, we demonstrate biphotons with subnatural linewidth in the sub-MHz regime.
Our work has potential applications in realizing quantum repeaters and large cluster states for LDQC and LOQC.
arXiv Detail & Related papers (2020-09-09T02:39:50Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.