Evaluating Temporal Plasticity in Foundation Time Series Models for Incremental Fine-tuning
- URL: http://arxiv.org/abs/2504.14677v1
- Date: Sun, 20 Apr 2025 16:43:01 GMT
- Title: Evaluating Temporal Plasticity in Foundation Time Series Models for Incremental Fine-tuning
- Authors: Jia Liu, Cheng Jinguo, Xia Fang, Zhenyuan Ma, Yuankai Wu,
- Abstract summary: Time series foundation models excel at diverse time series forecasting tasks, but their capacity for continuous improvement through incremental learning remains unexplored.<n>We present the first comprehensive study investigating these models' temporal plasticity - their ability to progressively enhance performance through continual learning.<n>Our findings reveal that while traditional models struggle with performance deterioration during incremental fine-tuning, foundation models like Time-MoE and Chronos demonstrate sustained improvement in predictive accuracy.
- Score: 8.191499481025843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series foundation models excel at diverse time series forecasting tasks, but their capacity for continuous improvement through incremental learning remains unexplored. We present the first comprehensive study investigating these models' temporal plasticity - their ability to progressively enhance performance through continual learning while maintaining existing capabilities. Through experiments on real-world datasets exhibiting distribution shifts, we evaluate both conventional deep learning models and foundation models using a novel continual learning framework. Our findings reveal that while traditional models struggle with performance deterioration during incremental fine-tuning, foundation models like Time-MoE and Chronos demonstrate sustained improvement in predictive accuracy. This suggests that optimizing foundation model fine-tuning strategies may be more valuable than developing domain-specific small models. Our research introduces new evaluation methodologies and insights for developing foundation time series models with robust continuous learning capabilities.
Related papers
- Decoding Latent Spaces: Assessing the Interpretability of Time Series Foundation Models for Visual Analytics [8.924278187470678]
The present study explores the interpretability of latent spaces produced by time series foundation models.
We evaluate the MOMENT family of models for imputation, prediction, classification, and anomaly detection.
arXiv Detail & Related papers (2025-04-26T17:24:41Z) - TimeRAF: Retrieval-Augmented Foundation model for Zero-shot Time Series Forecasting [59.702504386429126]
TimeRAF is a Retrieval-Augmented Forecasting model that enhance zero-shot time series forecasting through retrieval-augmented techniques.<n>TimeRAF employs an end-to-end learnable retriever to extract valuable information from the knowledge base.
arXiv Detail & Related papers (2024-12-30T09:06:47Z) - Recurrent Neural Goodness-of-Fit Test for Time Series [8.22915954499148]
Time series data are crucial across diverse domains such as finance and healthcare.<n>Traditional evaluation metrics fall short due to the temporal dependencies and potential high dimensionality of the features.<n>We propose the REcurrent NeurAL (RENAL) Goodness-of-Fit test, a novel and statistically rigorous framework for evaluating generative time series models.
arXiv Detail & Related papers (2024-10-17T19:32:25Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Zero-shot forecasting of chaotic systems [6.445605125467573]
Foundation models pre-trained on vast amounts of time-series data from diverse domains.
We evaluate whether the zero-shot learning paradigm extends to the challenging task of forecasting chaotic systems.
arXiv Detail & Related papers (2024-09-24T05:56:58Z) - Implicit Reasoning in Deep Time Series Forecasting [16.750280337155647]
This work takes an initial step toward assessing the reasoning abilities of deep time series forecasting models.
We find that certain linear, patch-based Transformer models generalize effectively in systematically orchestrated out-of-distribution scenarios.
arXiv Detail & Related papers (2024-09-17T02:11:19Z) - Low-Rank Adaptation of Time Series Foundational Models for Out-of-Domain Modality Forecasting [5.354055742467354]
Low-Rank Adaptation (LoRA) is a technique for fine-tuning large pre-trained or foundational models across different modalities and tasks.
This paper examines the impact of LoRA on contemporary time series foundational models: Lag-Llama, MOIRAI, and Chronos.
arXiv Detail & Related papers (2024-05-16T16:05:33Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Revisiting the Temporal Modeling in Spatio-Temporal Predictive Learning
under A Unified View [73.73667848619343]
We introduce USTEP (Unified S-TEmporal Predictive learning), an innovative framework that reconciles the recurrent-based and recurrent-free methods by integrating both micro-temporal and macro-temporal scales.
arXiv Detail & Related papers (2023-10-09T16:17:42Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.