Decoding Latent Spaces: Assessing the Interpretability of Time Series Foundation Models for Visual Analytics
- URL: http://arxiv.org/abs/2504.20099v1
- Date: Sat, 26 Apr 2025 17:24:41 GMT
- Title: Decoding Latent Spaces: Assessing the Interpretability of Time Series Foundation Models for Visual Analytics
- Authors: Inmaculada Santamaria-Valenzuela, Victor Rodriguez-Fernandez, Javier Huertas-Tato, Jong Hyuk Park, David Camacho,
- Abstract summary: The present study explores the interpretability of latent spaces produced by time series foundation models.<n>We evaluate the MOMENT family of models for imputation, prediction, classification, and anomaly detection.
- Score: 8.924278187470678
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The present study explores the interpretability of latent spaces produced by time series foundation models, focusing on their potential for visual analysis tasks. Specifically, we evaluate the MOMENT family of models, a set of transformer-based, pre-trained architectures for multivariate time series tasks such as: imputation, prediction, classification, and anomaly detection. We evaluate the capacity of these models on five datasets to capture the underlying structures in time series data within their latent space projection and validate whether fine tuning improves the clarity of the resulting embedding spaces. Notable performance improvements in terms of loss reduction were observed after fine tuning. Visual analysis shows limited improvement in the interpretability of the embeddings, requiring further work. Results suggest that, although Time Series Foundation Models such as MOMENT are robust, their latent spaces may require additional methodological refinements to be adequately interpreted, such as alternative projection techniques, loss functions, or data preprocessing strategies. Despite the limitations of MOMENT, foundation models supose a big reduction in execution time and so a great advance for interactive visual analytics.
Related papers
- Foundation Models for Time Series: A Survey [0.27835153780240135]
Transformer-based foundation models have emerged as a dominant paradigm in time series analysis.<n>This survey introduces a novel taxonomy to categorize them across several dimensions.
arXiv Detail & Related papers (2025-04-05T01:27:55Z) - Transforming Multidimensional Time Series into Interpretable Event Sequences for Advanced Data Mining [5.2863523790908955]
This paper introduces a novel proposed representation model designed to address the limitations of traditional methods in multidimensional time series (MTS) analysis.
The proposed framework has significant potential for applications across various fields, including services for monitoring and optimizing IT infrastructure, medical diagnosis through continuous patient monitoring, trend analysis, and internet businesses for tracking user behavior and forecasting.
arXiv Detail & Related papers (2024-09-22T06:27:07Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Assessment of Spatio-Temporal Predictors in the Presence of Missing and Heterogeneous Data [23.280400290071732]
Deep learning approaches achieve outstanding predictive performance in modeling modern data, despite increasing complexity and scale.
evaluating the quality of predictive models becomes more challenging as traditional statistical assumptions often no longer hold.
This paper introduces a residual analysis framework designed to assess the optimality of temporal-temporal predictive neural models.
arXiv Detail & Related papers (2023-02-03T12:55:08Z) - Diffusion-based Time Series Imputation and Forecasting with Structured
State Space Models [2.299617836036273]
We put forward SSSD, an imputation model that relies on two emerging technologies,conditional diffusion models and structured state space models.
We demonstrate that SSSD matches or even exceeds state-of-the-art probabilistic imputation and forecasting performance on a broad range of data sets and different missingness scenarios.
arXiv Detail & Related papers (2022-08-19T15:29:43Z) - Learning to Reconstruct Missing Data from Spatiotemporal Graphs with
Sparse Observations [11.486068333583216]
This paper tackles the problem of learning effective models to reconstruct missing data points.
We propose a class of attention-based architectures, that given a set of highly sparse observations, learn a representation for points in time and space.
Compared to the state of the art, our model handles sparse data without propagating prediction errors or requiring a bidirectional model to encode forward and backward time dependencies.
arXiv Detail & Related papers (2022-05-26T16:40:48Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.