論文の概要: An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework
- arxiv url: http://arxiv.org/abs/2504.14681v1
- Date: Sun, 20 Apr 2025 16:57:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 20:50:28.365497
- Title: An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework
- Title(参考訳): LLM対応マルチエージェント自律メカトロニクス設計フレームワーク
- Authors: Zeyu Wang, Frank P. -W. Lo, Qian Chen, Yongqi Zhang, Chen Lin, Xu Chen, Zhenhua Yu, Alexander J. Thompson, Eric M. Yeatman, Benny P. L. Lo,
- Abstract要約: 本研究は, 機械設計, 最適化, エレクトロニクス, ソフトウェア工学の専門知識を統合した多エージェント自律メカトロニクス設計フレームワークを提案する。
このフレームワークは、言語駆動のワークフローを通じて運用され、構造化された人間のフィードバックを組み込んで、現実世界の制約下での堅牢なパフォーマンスを保証する。
完全に機能する自律型容器は、最適化された推進、コスト効率の高い電子機器、高度な制御を備えていた。
- 参考スコア(独自算出の注目度): 49.633199780510864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing LLM-enabled multi-agent frameworks are predominantly limited to digital or simulated environments and confined to narrowly focused knowledge domain, constraining their applicability to complex engineering tasks that require the design of physical embodiment, cross-disciplinary integration, and constraint-aware reasoning. This work proposes a multi-agent autonomous mechatronics design framework, integrating expertise across mechanical design, optimization, electronics, and software engineering to autonomously generate functional prototypes with minimal direct human design input. Operating primarily through a language-driven workflow, the framework incorporates structured human feedback to ensure robust performance under real-world constraints. To validate its capabilities, the framework is applied to a real-world challenge involving autonomous water-quality monitoring and sampling, where traditional methods are labor-intensive and ecologically disruptive. Leveraging the proposed system, a fully functional autonomous vessel was developed with optimized propulsion, cost-effective electronics, and advanced control. The design process was carried out by specialized agents, including a high-level planning agent responsible for problem abstraction and dedicated agents for structural, electronics, control, and software development. This approach demonstrates the potential of LLM-based multi-agent systems to automate real-world engineering workflows and reduce reliance on extensive domain expertise.
- Abstract(参考訳): 既存のLLM対応のマルチエージェントフレームワークは、主にデジタルまたはシミュレートされた環境に限られており、限定された知識領域に限られており、物理的な具体化、学際的統合、制約対応推論といった複雑なエンジニアリングタスクに適用性に制限されている。
本研究は, 機械設計, 最適化, エレクトロニクス, ソフトウェア工学の専門知識を統合し, 最小限の直接設計入力で機能プロトタイプを自律的に生成する多エージェント自律型メカトロニクス設計フレームワークを提案する。
主に言語駆動のワークフローを通じて運用されるこのフレームワークは、構造化された人間のフィードバックを取り入れて、現実世界の制約下での堅牢なパフォーマンスを保証する。
その能力を検証するために、このフレームワークは、自律的な水質モニタリングとサンプリングを含む現実世界の課題に適用される。
提案システムを活用することで、最適化された推進、コスト効率の高い電子機器、高度な制御を備えた完全に機能する自律型容器が開発された。
設計プロセスは、問題抽象化を担当する高レベルの計画エージェントや、構造、エレクトロニクス、制御、ソフトウェア開発のための専用エージェントなど、特殊なエージェントによって実行された。
このアプローチは、LLMベースのマルチエージェントシステムによって、現実世界のエンジニアリングワークフローを自動化し、広範なドメイン専門知識への依存を減らす可能性を実証する。
関連論文リスト
- General-Purpose Aerial Intelligent Agents Empowered by Large Language Models [9.603293922137965]
本稿では,オープンワールドタスク実行が可能な,初の航空知的エージェントを提案する。
私たちのハードウェアとソフトウェアの共同設計システムは、2つの基本的な制限に対処します。
本システムは,コミュニケーション制約のある環境におけるタスク計画とシーン理解の信頼性を示す。
論文 参考訳(メタデータ) (2025-03-11T11:13:58Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
私たちは世界モデルを学ぶための新しいフレームワークを紹介します。
スケーラブルで堅牢なフレームワークを提供することで、現実のアプリケーションにおいて適応的で効率的なロボットシステムを実現することができる。
論文 参考訳(メタデータ) (2025-01-17T10:39:09Z) - EMOS: Embodiment-aware Heterogeneous Multi-robot Operating System with LLM Agents [33.77674812074215]
異種ロボット間の効果的な協調を実現するための新しいマルチエージェントフレームワークを提案する。
エージェントがロボットURDFファイルを理解し、ロボットキネマティクスツールを呼び出し、その物理能力の記述を生成する。
Habitat-MASベンチマークは、マルチエージェントフレームワークがエンボディメント認識推論を必要とするタスクをどのように処理するかを評価するように設計されている。
論文 参考訳(メタデータ) (2024-10-30T03:20:01Z) - Knowledge Graph Modeling-Driven Large Language Model Operating System (LLM OS) for Task Automation in Process Engineering Problem-Solving [0.0]
本稿では,化学・プロセス産業における複雑な問題の解決を目的としたAI駆動型フレームワークであるプロセスエンジニアリングオペレーションアシスタント(PEOA)を紹介する。
このフレームワークはメタエージェントによって構成されたモジュラーアーキテクチャを採用しており、中央コーディネータとして機能している。
その結果、計算の自動化、プロトタイピングの高速化、産業プロセスに対するAIによる意思決定支援におけるフレームワークの有効性が示された。
論文 参考訳(メタデータ) (2024-08-23T13:52:47Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
タスク・アンド・モーション・プランニング(タスク・アンド・モーション・プランニング、TAMP)は、自動化された計画問題の解決策を見つけるための問題である。
本稿では,TAMP問題のモデル化とベンチマークを行うための,汎用的でオープンソースのフレームワークを提案する。
移動エージェントと複数のタスク状態依存障害を含むTAMP問題を解決する革新的なメタ技術を導入する。
論文 参考訳(メタデータ) (2024-08-11T14:57:57Z) - BMW Agents -- A Framework For Task Automation Through Multi-Agent Collaboration [0.0]
我々は、様々なドメインにわたる複雑なユースケースアプリケーションを扱う柔軟なエージェントエンジニアリングフレームワークの設計に重点を置いている。
提案するフレームワークは,産業用アプリケーションの信頼性を提供し,複数の自律エージェントに対して,スケーラブルでフレキシブルで協調的なワークフローを保証するためのテクニックを提供する。
論文 参考訳(メタデータ) (2024-06-28T16:39:20Z) - Balancing Autonomy and Alignment: A Multi-Dimensional Taxonomy for
Autonomous LLM-powered Multi-Agent Architectures [0.0]
大規模言語モデル(LLM)は、洗練された言語理解と生成能力を備えた人工知能の分野に革命をもたらした。
本稿では,LLMを用いた自律型マルチエージェントシステムが自律性とアライメントの動的相互作用をどのようにバランスさせるかを分析するために,総合的な多次元分類法を提案する。
論文 参考訳(メタデータ) (2023-10-05T16:37:29Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。