IXGS-Intraoperative 3D Reconstruction from Sparse, Arbitrarily Posed Real X-rays
- URL: http://arxiv.org/abs/2504.14699v1
- Date: Sun, 20 Apr 2025 18:28:13 GMT
- Title: IXGS-Intraoperative 3D Reconstruction from Sparse, Arbitrarily Posed Real X-rays
- Authors: Sascha Jecklin, Aidana Massalimova, Ruyi Zha, Lilian Calvet, Christoph J. Laux, Mazda Farshad, Philipp Fürnstahl,
- Abstract summary: We extend the $R2$-Gaussian splatting framework to reconstruct consistent 3D volumes under challenging conditions.<n>We introduce an anatomy-guided radiographic standardization step using style transfer, improving visual consistency across views.
- Score: 1.2721397985664153
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Spine surgery is a high-risk intervention demanding precise execution, often supported by image-based navigation systems. Recently, supervised learning approaches have gained attention for reconstructing 3D spinal anatomy from sparse fluoroscopic data, significantly reducing reliance on radiation-intensive 3D imaging systems. However, these methods typically require large amounts of annotated training data and may struggle to generalize across varying patient anatomies or imaging conditions. Instance-learning approaches like Gaussian splatting could offer an alternative by avoiding extensive annotation requirements. While Gaussian splatting has shown promise for novel view synthesis, its application to sparse, arbitrarily posed real intraoperative X-rays has remained largely unexplored. This work addresses this limitation by extending the $R^2$-Gaussian splatting framework to reconstruct anatomically consistent 3D volumes under these challenging conditions. We introduce an anatomy-guided radiographic standardization step using style transfer, improving visual consistency across views, and enhancing reconstruction quality. Notably, our framework requires no pretraining, making it inherently adaptable to new patients and anatomies. We evaluated our approach using an ex-vivo dataset. Expert surgical evaluation confirmed the clinical utility of the 3D reconstructions for navigation, especially when using 20 to 30 views, and highlighted the standardization's benefit for anatomical clarity. Benchmarking via quantitative 2D metrics (PSNR/SSIM) confirmed performance trade-offs compared to idealized settings, but also validated the improvement gained from standardization over raw inputs. This work demonstrates the feasibility of instance-based volumetric reconstruction from arbitrary sparse-view X-rays, advancing intraoperative 3D imaging for surgical navigation.
Related papers
- Landmark-Free Preoperative-to-Intraoperative Registration in Laparoscopic Liver Resection [50.388465935739376]
Liver registration by overlaying preoperative 3D models onto intraoperative 2D frames can assist surgeons in perceiving the spatial anatomy of the liver clearly for a higher surgical success rate.<n>Existing registration methods rely heavily on anatomical landmark-based, which encounter two major limitations.<n>We propose a landmark-free preoperative-to-intraoperative registration framework utilizing effective self-supervised learning.
arXiv Detail & Related papers (2025-04-21T14:55:57Z) - Feature-EndoGaussian: Feature Distilled Gaussian Splatting in Surgical Deformable Scene Reconstruction [26.358467072736524]
We introduce Feature-EndoGaussian (FEG), an extension of 3DGS that integrates 2D segmentation cues into 3D rendering to enable real-time semantic and scene reconstruction.
FEG achieves superior performance (SSIM of 0.97, PSNR of 39.08, and LPIPS of 0.03) compared to leading methods.
arXiv Detail & Related papers (2025-03-08T10:50:19Z) - Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
We present a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering.
Our approach separates implicit neural representation into two components, handling anatomical structure preoperatively and appearance intraoperatively.
We tested our method on retrospective patients' data from clinical cases, showing that our method outperforms state-of-the-art while meeting current clinical standards for registration.
arXiv Detail & Related papers (2024-09-18T13:40:59Z) - Learning 3D Gaussians for Extremely Sparse-View Cone-Beam CT Reconstruction [9.848266253196307]
Cone-Beam Computed Tomography (CBCT) is an indispensable technique in medical imaging, yet the associated radiation exposure raises concerns in clinical practice.
We propose a novel reconstruction framework, namely DIF-Gaussian, which leverages 3D Gaussians to represent the feature distribution in the 3D space.
We evaluate DIF-Gaussian on two public datasets, showing significantly superior reconstruction performance than previous state-of-the-art methods.
arXiv Detail & Related papers (2024-07-01T08:48:04Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
Reconstruction of endoscopic scenes is an important asset for various medical applications, from post-surgery analysis to educational training.
We adress the challenging setup of a moving endoscope within a highly dynamic environment of deforming tissue.
We propose an implicit scene separation into multiple overlapping 4D neural radiance fields (NeRFs) and a progressive optimization scheme jointly optimizing for reconstruction and camera poses from scratch.
This improves the ease-of-use and allows to scale reconstruction capabilities in time to process surgical videos of 5,000 frames and more; an improvement of more than ten times compared to the state of the art while being agnostic to external tracking information
arXiv Detail & Related papers (2024-03-18T19:13:02Z) - Domain adaptation strategies for 3D reconstruction of the lumbar spine using real fluoroscopy data [9.21828361691977]
This study tackles key obstacles in adopting surgical navigation in orthopedic surgeries.
It shows an approach for generating 3D anatomical models of the spine from only a few fluoroscopic images.
It achieved an 84% F1 score, matching the accuracy of our previous synthetic data-based research.
arXiv Detail & Related papers (2024-01-29T10:22:45Z) - EndoGaussians: Single View Dynamic Gaussian Splatting for Deformable
Endoscopic Tissues Reconstruction [5.694872363688119]
We introduce EndoGaussians, a novel approach that employs Gaussian Splatting for dynamic endoscopic 3D reconstruction.
Our method sets new state-of-the-art standards, as demonstrated by quantitative assessments on various endoscope datasets.
arXiv Detail & Related papers (2024-01-24T10:27:50Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Stereo Dense Scene Reconstruction and Accurate Laparoscope Localization
for Learning-Based Navigation in Robot-Assisted Surgery [37.14020061063255]
The computation of anatomical information and laparoscope position is a fundamental block of robot-assisted surgical navigation in Minimally Invasive Surgery (MIS)
We propose a learning-driven framework, in which an image-guided laparoscopic localization with 3D reconstructions of complex anatomical structures is hereby achieved.
arXiv Detail & Related papers (2021-10-08T06:12:18Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
Photoacoustic tomography (PAT) is a novel imaging technique that can resolve both morphological and functional tissue properties.
A current drawback is the limited field-of-view provided by the conventionally applied 2D probes.
We present a novel approach to 3D reconstruction of PAT data that does not require an external tracking system.
arXiv Detail & Related papers (2020-11-10T09:27:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.