Can We Ignore Labels In Out of Distribution Detection?
- URL: http://arxiv.org/abs/2504.14704v1
- Date: Sun, 20 Apr 2025 18:37:51 GMT
- Title: Can We Ignore Labels In Out of Distribution Detection?
- Authors: Hong Yang, Qi Yu, Travis Desel,
- Abstract summary: Out-of-distribution (OOD) detection methods have recently become more prominent, serving as a core element in safety-critical autonomous systems.<n>Due to the cost of labeled data, recent works have investigated the feasibility of self-supervised learning (SSL) OOD detection.<n>We identify a set of conditions for a theoretical guarantee of failure in unlabeled OOD detection algorithms from an information-theoretic perspective.
- Score: 29.959464384772776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-distribution (OOD) detection methods have recently become more prominent, serving as a core element in safety-critical autonomous systems. One major purpose of OOD detection is to reject invalid inputs that could lead to unpredictable errors and compromise safety. Due to the cost of labeled data, recent works have investigated the feasibility of self-supervised learning (SSL) OOD detection, unlabeled OOD detection, and zero shot OOD detection. In this work, we identify a set of conditions for a theoretical guarantee of failure in unlabeled OOD detection algorithms from an information-theoretic perspective. These conditions are present in all OOD tasks dealing with real-world data: I) we provide theoretical proof of unlabeled OOD detection failure when there exists zero mutual information between the learning objective and the in-distribution labels, a.k.a. 'label blindness', II) we define a new OOD task - Adjacent OOD detection - that tests for label blindness and accounts for a previously ignored safety gap in all OOD detection benchmarks, and III) we perform experiments demonstrating that existing unlabeled OOD methods fail under conditions suggested by our label blindness theory and analyze the implications for future research in unlabeled OOD methods.
Related papers
- Semantic or Covariate? A Study on the Intractable Case of Out-of-Distribution Detection [70.57120710151105]
We provide a more precise definition of the Semantic Space for the ID distribution.
We also define the "Tractable OOD" setting which ensures the distinguishability of OOD and ID distributions.
arXiv Detail & Related papers (2024-11-18T03:09:39Z) - The Best of Both Worlds: On the Dilemma of Out-of-distribution Detection [75.65876949930258]
Out-of-distribution (OOD) detection is essential for model trustworthiness.
We show that the superior OOD detection performance of state-of-the-art methods is achieved by secretly sacrificing the OOD generalization ability.
arXiv Detail & Related papers (2024-10-12T07:02:04Z) - Rethinking Out-of-Distribution Detection on Imbalanced Data Distribution [38.844580833635725]
We present a training-time regularization technique to mitigate the bias and boost imbalanced OOD detectors across architecture designs.
Our method translates into consistent improvements on the representative CIFAR10-LT, CIFAR100-LT, and ImageNet-LT benchmarks.
arXiv Detail & Related papers (2024-07-23T12:28:59Z) - APP: Adaptive Prototypical Pseudo-Labeling for Few-shot OOD Detection [40.846633965439956]
This paper focuses on a few-shot OOD setting where there are only a few labeled IND data and massive unlabeled mixed data.
We propose an adaptive pseudo-labeling (APP) method for few-shot OOD detection.
arXiv Detail & Related papers (2023-10-20T09:48:52Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
Given their relevance for safe(r) AI, it is important to examine whether the basis for comparing OOD detection methods is consistent with practical needs.
We propose a new metric - Area Under the Threshold Curve (AUTC), which explicitly penalizes poor separation between ID and OOD samples.
arXiv Detail & Related papers (2023-06-26T12:51:32Z) - Unsupervised Evaluation of Out-of-distribution Detection: A Data-centric
Perspective [55.45202687256175]
Out-of-distribution (OOD) detection methods assume that they have test ground truths, i.e., whether individual test samples are in-distribution (IND) or OOD.
In this paper, we are the first to introduce the unsupervised evaluation problem in OOD detection.
We propose three methods to compute Gscore as an unsupervised indicator of OOD detection performance.
arXiv Detail & Related papers (2023-02-16T13:34:35Z) - Rainproof: An Umbrella To Shield Text Generators From
Out-Of-Distribution Data [41.62897997865578]
Key ingredient to ensure safe system behaviour is Out-Of-Distribution detection.
Most methods rely on hidden features output by the encoder.
In this work, we focus on leveraging soft-probabilities in a black-box framework.
arXiv Detail & Related papers (2022-12-18T21:22:28Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
Deep neural networks are known to produce highly overconfident predictions on out-of-distribution (OOD) data.
In this paper we propose a novel method where from first principles we combine a certifiable OOD detector with a standard classifier into an OOD aware classifier.
In this way we achieve the best of two worlds: certifiably adversarially robust OOD detection, even for OOD samples close to the in-distribution, without loss in prediction accuracy and close to state-of-the-art OOD detection performance for non-manipulated OOD data.
arXiv Detail & Related papers (2021-06-08T11:40:49Z) - Certifiably Adversarially Robust Detection of Out-of-Distribution Data [111.67388500330273]
We aim for certifiable worst case guarantees for OOD detection by enforcing low confidence at the OOD point.
We show that non-trivial bounds on the confidence for OOD data generalizing beyond the OOD dataset seen at training time are possible.
arXiv Detail & Related papers (2020-07-16T17:16:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.