論文の概要: Time Frequency Analysis of EMG Signal for Gesture Recognition using Fine grained Features
- arxiv url: http://arxiv.org/abs/2504.14708v1
- Date: Sun, 20 Apr 2025 18:51:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 20:35:23.968141
- Title: Time Frequency Analysis of EMG Signal for Gesture Recognition using Fine grained Features
- Title(参考訳): きめ細かい特徴を用いたジェスチャー認識のためのEMG信号の時間周波数解析
- Authors: Parshuram N. Aarotale, Ajita Rattani,
- Abstract要約: 本稿では,細粒度分類を用いた手動作認識のための新しい手法を提案する。
XMANetは、浅層から深層CNNの専門家の間での相互注意を通じて、低レベルの局所的および高レベルのセマンティックキューを統一する。
- 参考スコア(独自算出の注目度): 3.9440964696313485
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Electromyography (EMG) based hand gesture recognition converts forearm muscle activity into control commands for prosthetics, rehabilitation, and human computer interaction. This paper proposes a novel approach to EMG-based hand gesture recognition that uses fine-grained classification and presents XMANet, which unifies low-level local and high level semantic cues through cross layer mutual attention among shallow to deep CNN experts. Using stacked spectrograms and scalograms derived from the Short Time Fourier Transform (STFT) and Wavelet Transform (WT), we benchmark XMANet against ResNet50, DenseNet-121, MobileNetV3, and EfficientNetB0. Experimental results on the Grabmyo dataset indicate that, using STFT, the proposed XMANet model outperforms the baseline ResNet50, EfficientNetB0, MobileNetV3, and DenseNet121 models with improvement of approximately 1.72%, 4.38%, 5.10%, and 2.53%, respectively. When employing the WT approach, improvements of around 1.57%, 1.88%, 1.46%, and 2.05% are observed over the same baselines. Similarly, on the FORS EMG dataset, the XMANet(ResNet50) model using STFT shows an improvement of about 5.04% over the baseline ResNet50. In comparison, the XMANet(DenseNet121) and XMANet(MobileNetV3) models yield enhancements of approximately 4.11% and 2.81%, respectively. Moreover, when using WT, the proposed XMANet achieves gains of around 4.26%, 9.36%, 5.72%, and 6.09% over the baseline ResNet50, DenseNet121, MobileNetV3, and EfficientNetB0 models, respectively. These results confirm that XMANet consistently improves performance across various architectures and signal processing techniques, demonstrating the strong potential of fine grained features for accurate and robust EMG classification.
- Abstract(参考訳): 筋電図に基づく手の動き認識は、前腕筋活動を人工装具、リハビリテーション、人とのコンピュータインタラクションの制御コマンドに変換する。
本稿では,細粒度分類を用いたEMGに基づく手動作認識手法を提案する。また,浅層・深層CNNの専門家間での相互注意を通じて,低レベルの局所的・高レベルの意味的手がかりを統一するXMANetを提案する。
ショートタイムフーリエ変換 (STFT) とウェーブレット変換 (WT) から得られた累積スペクトルと頭文字を用いて、XMANet を ResNet50, DenseNet-121, MobileNetV3, EfficientNetB0 に対してベンチマークする。
Grabmyoデータセットの実験結果から、提案したXMANetモデルはベースラインのResNet50、EfficientNetB0、MobileNetV3、DenseNet121より優れており、それぞれ約1.72%、4.38%、5.10%、2.53%改善している。
WTアプローチを採用する場合、同じベースライン上で1.57%、1.88%、1.46%、2.05%の改善が観察される。
同様に、Force EMGデータセットでは、STFTを使用したXMANet(ResNet50)モデルはベースラインのResNet50よりも約5.04%改善している。
対照的に、XMANet(DenseNet121) と XMANet(MobileNetV3) のモデルでは、それぞれ約4.11%と2.81%の拡張がなされている。
さらに、WTを使用する場合、提案されたXMANetは、それぞれResNet50、DenseNet121、MobileNetV3、EfficientNetB0モデルの約4.26%、9.36%、5.72%、および6.09%のゲインを達成している。
これらの結果から、XMANetは様々なアーキテクチャや信号処理技術における性能を一貫して改善し、精密で堅牢なEMG分類のためのきめ細かい機能の可能性を示している。
関連論文リスト
- Analysis of Convolutional Neural Network-based Image Classifications: A Multi-Featured Application for Rice Leaf Disease Prediction and Recommendations for Farmers [0.0]
本研究では,8つの異なる畳み込みニューラルネットワーク(CNN)アルゴリズムを用いて,イネの病原性分類を改善する新しい方法を提案する。
この最先端のアプリケーションの助けを借りて、農家はタイムリーでインフォームドな意思決定ができる。
注目すべき結果は、ResNet-50の75%の精度、DenseNet121の90%の精度、VGG16の84%の精度、MobileNetV2の95.83%の精度、DenseNet169の91.61%の精度、InceptionV3の86%の精度である。
論文 参考訳(メタデータ) (2024-09-17T05:32:01Z) - A Lightweight and Accurate Face Detection Algorithm Based on Retinaface [0.5076419064097734]
Retinaface に基づく軽量かつ高精度な顔検出アルゴリズム LAFD (Light and accurate face detection) を提案する。
アルゴリズムのバックボーンネットワークは、畳み込みカーネルのサイズを調整する修正されたMobileNetV3ネットワークである。
入力画像が前処理され、長さが1560px、幅が1200pxとなると、平均精度は86.2%となる。
論文 参考訳(メタデータ) (2023-08-08T15:36:57Z) - Reinforce Data, Multiply Impact: Improved Model Accuracy and Robustness
with Dataset Reinforcement [68.44100784364987]
本研究では、強化データセット上でトレーニングされたモデルアーキテクチャの精度が、ユーザにとって追加のトレーニングコストなしで向上するように、データセットを改善する戦略を提案する。
ImageNet+と呼ばれるImageNetトレーニングデータセットの強化バージョンと、強化されたデータセットCIFAR-100+、Flowers-102+、Food-101+を作成します。
ImageNet+でトレーニングされたモデルは、より正確で、堅牢で、校正され、下流タスクにうまく転送されます。
論文 参考訳(メタデータ) (2023-03-15T23:10:17Z) - Lightweight Vision Transformer with Cross Feature Attention [6.103065659061625]
畳み込みニューラルネットワーク(CNN)は空間的帰納バイアスを利用して視覚表現を学習する。
ViTは自己認識メカニズムを使ってグローバルな表現を学ぶことができるが、通常は重く、モバイルデバイスには適さない。
我々はトランスのコスト削減のためにクロスフィーチャーアテンション(XFA)を提案し、効率的なモバイルCNNを組み合わせて新しい軽量CNN-ViTハイブリッドモデルXFormerを構築した。
論文 参考訳(メタデータ) (2022-07-15T03:27:13Z) - EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for
Mobile Vision Applications [68.35683849098105]
入力テンソルを複数のチャネルグループに分割するSDTAエンコーダを導入する。
1.3Mパラメータを持つEdgeNeXtモデルでは、ImageNet-1Kで71.2%のTop-1精度を実現している。
パラメータ5.6MのEdgeNeXtモデルでは、ImageNet-1Kで79.4%のTop-1精度を実現しています。
論文 参考訳(メタデータ) (2022-06-21T17:59:56Z) - Global Context Vision Transformers [78.5346173956383]
我々は,コンピュータビジョンのパラメータと計算利用を向上する新しいアーキテクチャであるGC ViT(Global context vision transformer)を提案する。
本稿では,ViTにおける帰納バイアスの欠如に対処し,アーキテクチャにおける可溶性逆残差ブロックを改良して活用することを提案する。
提案したGC ViTは,画像分類,オブジェクト検出,セマンティックセマンティックセグメンテーションタスクにまたがる最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-06-20T18:42:44Z) - Focal Modulation Networks [105.93086472906765]
自己注意(SA)は完全に焦点変調ネットワーク(FocalNet)に置き換えられる
ImageNet-1Kの精度は82.3%、83.9%である。
FocalNetsは下流のタスクに転送する際、顕著な優位性を示す。
論文 参考訳(メタデータ) (2022-03-22T17:54:50Z) - Involution: Inverting the Inherence of Convolution for Visual
Recognition [72.88582255910835]
本稿では,畳み込みの原理を逆転させることにより,深層ニューラルネットワークの新たな原子操作を提案する。
提案する畳み込み演算子は、視覚認識のための新しい世代のニューラルネットワークを構築するための基本ブロックとして利用することができる。
当社のInvolutionベースのモデルは、ResNet-50を使用した畳み込みベースラインのパフォーマンスを最大1.6%の精度、2.5%と2.4%のバウンディングボックスAP、4.7%は絶対にIoUを意味します。
論文 参考訳(メタデータ) (2021-03-10T18:40:46Z) - Inception Convolution with Efficient Dilation Search [121.41030859447487]
拡散畳み込みは、効果的な受容場を制御し、オブジェクトの大規模な分散を処理するための標準的な畳み込みニューラルネットワークの重要な変異体である。
そこで我々は,異なる軸,チャネル,層間の独立な拡散を有する拡張畳み込みの新たな変異体,すなわち開始(拡張)畳み込みを提案する。
本稿では,データに複雑なインセプション・コンボリューションを適合させる実用的な手法を探索し,統計的最適化に基づく簡易かつ効果的な拡張探索アルゴリズム(EDO)を開発した。
論文 参考訳(メタデータ) (2020-12-25T14:58:35Z) - Grafted network for person re-identification [14.372506245952383]
畳み込みニューラルネットワークは、人物再同定(re-ID)において顕著な効果を示した
本稿では,高精度根茎と軽量シオンをグラフトした新しいグラフトネットワーク(GraftedNet)を提案する。
実験の結果、GraftedNetはランキング1で93.02%、85.3%、76.2%、mAPで81.6%、74.7%、71.6%を達成した。
論文 参考訳(メタデータ) (2020-06-02T22:33:44Z) - An Accurate EEGNet-based Motor-Imagery Brain-Computer Interface for
Low-Power Edge Computing [13.266626571886354]
本稿では,MI-BCI(MI-BCI)の精度と堅牢性を示す。
EEGNetに基づく新しいモデルでは、低消費電力マイクロコントローラユニット(MCU)のメモリフットプリントと計算資源の要件が一致している。
スケールされたモデルは、最小モデルを操作するために101msと4.28mJを消費する商用のCortex-M4F MCUにデプロイされ、中型モデルでは44msと18.1mJのCortex-M7にデプロイされる。
論文 参考訳(メタデータ) (2020-03-31T19:52:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。