Exploring Collaborative GenAI Agents in Synchronous Group Settings: Eliciting Team Perceptions and Design Considerations for the Future of Work
- URL: http://arxiv.org/abs/2504.14779v1
- Date: Mon, 21 Apr 2025 00:38:02 GMT
- Title: Exploring Collaborative GenAI Agents in Synchronous Group Settings: Eliciting Team Perceptions and Design Considerations for the Future of Work
- Authors: Janet G. Johnson, Macarena Peralta, Mansanjam Kaur, Ruijie Sophia Huang, Sheng Zhao, Ruijia Guan, Shwetha Rajaram, Michael Nebeling,
- Abstract summary: We investigate the potential of collaborative GenAI agents to augment teamwork in synchronous group settings.<n>Our findings suggest that, if designed well, collaborative GenAI agents offer valuable opportunities to enhance team problem-solving.<n>However, teams' willingness to integrate GenAI agents depended on its perceived fit across a number of individual, team, and organizational factors.
- Score: 31.376737005894793
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While generative artificial intelligence (GenAI) is finding increased adoption in workplaces, current tools are primarily designed for individual use. Prior work established the potential for these tools to enhance personal creativity and productivity towards shared goals; however, we don't know yet how to best take into account the nuances of group work and team dynamics when deploying GenAI in work settings. In this paper, we investigate the potential of collaborative GenAI agents to augment teamwork in synchronous group settings through an exploratory study that engaged 25 professionals across 6 teams in speculative design workshops and individual follow-up interviews. Our workshops included a mixed reality provotype to simulate embodied collaborative GenAI agents capable of actively participating in group discussions. Our findings suggest that, if designed well, collaborative GenAI agents offer valuable opportunities to enhance team problem-solving by challenging groupthink, bridging communication gaps, and reducing social friction. However, teams' willingness to integrate GenAI agents depended on its perceived fit across a number of individual, team, and organizational factors. We outline the key design tensions around agent representation, social prominence, and engagement and highlight the opportunities spatial and immersive technologies could offer to modulate GenAI influence on team outcomes and strike a balance between augmentation and agency.
Related papers
- Unraveling Human-AI Teaming: A Review and Outlook [2.3396455015352258]
Artificial Intelligence (AI) is advancing at an unprecedented pace, with clear potential to enhance decision-making and productivity.<n>Yet, the collaborative decision-making process between humans and AI remains underdeveloped, often falling short of its transformative possibilities.<n>This paper explores the evolution of AI agents from passive tools to active collaborators in human-AI teams, emphasizing their ability to learn, adapt, and operate autonomously in complex environments.
arXiv Detail & Related papers (2025-04-08T07:37:25Z) - Enhancing Team Diversity with Generative AI: A Novel Project Management Framework [2.334887570960192]
This paper aims to explore the practical application of AI in enhancing team diversity and project management.<n>The framework is designed to address the common challenge of uniform team compositions in academic and research project teams.
arXiv Detail & Related papers (2025-01-13T21:39:06Z) - Collaborative Gym: A Framework for Enabling and Evaluating Human-Agent Collaboration [51.452664740963066]
Collaborative Gym is a framework enabling asynchronous, tripartite interaction among agents, humans, and task environments.<n>We instantiate Co-Gym with three representative tasks in both simulated and real-world conditions.<n>Our findings reveal that collaborative agents consistently outperform their fully autonomous counterparts in task performance.
arXiv Detail & Related papers (2024-12-20T09:21:15Z) - LLMs Integration in Software Engineering Team Projects: Roles, Impact, and a Pedagogical Design Space for AI Tools in Computing Education [7.058964784190549]
This work takes a pedagogical lens to explore the implications of generative AI (GenAI) models and tools, such as ChatGPT and GitHub Copilot.
Our results address a particular gap in understanding the role and implications of GenAI on teamwork, team-efficacy, and team dynamics.
arXiv Detail & Related papers (2024-10-30T14:43:33Z) - Scaling Large Language Model-based Multi-Agent Collaboration [72.8998796426346]
Recent breakthroughs in large language model-driven autonomous agents have revealed that multi-agent collaboration often surpasses each individual through collective reasoning.
This study explores whether the continuous addition of collaborative agents can yield similar benefits.
arXiv Detail & Related papers (2024-06-11T11:02:04Z) - Transforming Software Development with Generative AI: Empirical Insights on Collaboration and Workflow [2.6124032579630114]
Generative AI (GenAI) has fundamentally changed how knowledge workers, such as software developers, solve tasks and collaborate to build software products.
Introducing innovative tools like ChatGPT and Copilot has created new opportunities to assist and augment software developers across various problems.
Our study reveals that ChatGPT signifies a paradigm shift in the workflow of software developers. The technology empowers developers by enabling them to work more efficiently, speed up the learning process, and increase motivation by reducing tedious and repetitive tasks.
arXiv Detail & Related papers (2024-02-12T12:36:29Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
We propose a multi-agent framework framework that can collaboratively adjust its composition as a greater-than-the-sum-of-its-parts system.
Our experiments demonstrate that framework framework can effectively deploy multi-agent groups that outperform a single agent.
In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups.
arXiv Detail & Related papers (2023-08-21T16:47:11Z) - Automated Task-Time Interventions to Improve Teamwork using Imitation
Learning [5.423490734916741]
We present TIC: an automated intervention approach for improving coordination between team members.
We first learn a generative model of team behavior from past task execution data.
Next, it utilizes the learned generative model and team's task objective (shared reward) to algorithmically generate execution-time interventions.
arXiv Detail & Related papers (2023-03-01T11:09:06Z) - AutoML in The Wild: Obstacles, Workarounds, and Expectations [37.813441975457735]
This study focuses on understanding the limitations of AutoML encountered by users in their real-world practices.
Our findings reveal that users actively exercise user agency to overcome three major challenges arising from customizability, transparency, and privacy.
arXiv Detail & Related papers (2023-02-21T17:06:46Z) - On Emergent Communication in Competitive Multi-Agent Teams [116.95067289206919]
We investigate whether competition for performance from an external, similar agent team could act as a social influence.
Our results show that an external competitive influence leads to improved accuracy and generalization, as well as faster emergence of communicative languages.
arXiv Detail & Related papers (2020-03-04T01:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.