論文の概要: How Effective Can Dropout Be in Multiple Instance Learning ?
- arxiv url: http://arxiv.org/abs/2504.14783v1
- Date: Mon, 21 Apr 2025 00:46:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 20:08:17.682539
- Title: How Effective Can Dropout Be in Multiple Instance Learning ?
- Title(参考訳): 複数のインスタンス学習においてドロップアウトはどの程度効果的か?
- Authors: Wenhui Zhu, Peijie Qiu, Xiwen Chen, Zhangsihao Yang, Aristeidis Sotiras, Abolfazl Razi, Yalin Wang,
- Abstract要約: MIL(Multiple Instance Learning)は、様々なアプリケーションのための弱い教師付き手法である。
本稿では,MIL固有のドロップアウト手法であるMIL-Dropoutを提案し,どのインスタンスをドロップするかを体系的に決定する。
5つのMILベンチマークデータセットと2つのWSIデータセットの実験は、MIL-Dropoutが既存のMILメソッドのパフォーマンスを無視できる計算コストで向上させることを示した。
- 参考スコア(独自算出の注目度): 2.0792866989795864
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multiple Instance Learning (MIL) is a popular weakly-supervised method for various applications, with a particular interest in histological whole slide image (WSI) classification. Due to the gigapixel resolution of WSI, applications of MIL in WSI typically necessitate a two-stage training scheme: first, extract features from the pre-trained backbone and then perform MIL aggregation. However, it is well-known that this suboptimal training scheme suffers from "noisy" feature embeddings from the backbone and inherent weak supervision, hindering MIL from learning rich and generalizable features. However, the most commonly used technique (i.e., dropout) for mitigating this issue has yet to be explored in MIL. In this paper, we empirically explore how effective the dropout can be in MIL. Interestingly, we observe that dropping the top-k most important instances within a bag leads to better performance and generalization even under noise attack. Based on this key observation, we propose a novel MIL-specific dropout method, termed MIL-Dropout, which systematically determines which instances to drop. Experiments on five MIL benchmark datasets and two WSI datasets demonstrate that MIL-Dropout boosts the performance of current MIL methods with a negligible computational cost. The code is available at https://github.com/ChongQingNoSubway/MILDropout.
- Abstract(参考訳): マルチ・インスタンス・ラーニング (MIL) は、様々なアプリケーションにおいて、特に組織学的全スライド画像 (WSI) の分類に関心を持つ弱い教師付き手法である。
WSIのギガピクセル解像度のため、WSIにおけるMILの適用は通常、2段階のトレーニングスキームを必要とする。
しかし、この準最適トレーニングスキームは、背骨からの"ノイズ"機能埋め込みと固有の弱い監督に悩まされ、MILがリッチで一般化可能な特徴を学習することを妨げることが知られている。
しかし、この問題を緩和するための最も一般的なテクニック(つまり、ドロップアウト)は、まだMILでは研究されていない。
本稿では,MILにおけるドロップアウトの有効性について実験的に検討する。
興味深いことに、トップkの最も重要なインスタンスをバッグにドロップすると、ノイズアタック下であっても、パフォーマンスと一般化が向上する。
そこで本研究では,MIL-Dropoutと呼ばれる,MIL固有のドロップアウト手法を提案する。
5つのMILベンチマークデータセットと2つのWSIデータセットの実験は、MIL-Dropoutが既存のMILメソッドのパフォーマンスを無視できる計算コストで向上させることを示した。
コードはhttps://github.com/ChongQingNoSubway/MILDropout.comで公開されている。
関連論文リスト
- Attention Is Not What You Need: Revisiting Multi-Instance Learning for Whole Slide Image Classification [51.95824566163554]
我々は,標準MIL仮定と変分推論を相乗化することにより,スプリアス相関ではなく腫瘍形態学に焦点を合わせることができると主張している。
また, ハードインスタンスの識別に優れた分類境界を実現し, バッグとラベルの相互関係を緩和する。
論文 参考訳(メタデータ) (2024-08-18T12:15:22Z) - MamMIL: Multiple Instance Learning for Whole Slide Images with State Space Models [56.37780601189795]
本稿では,WSI分析のためのフレームワークMamMILを提案する。
私たちは各WSIを非指向グラフとして表現します。
マンバが1次元シーケンスしか処理できない問題に対処するために、トポロジ対応の走査機構を提案する。
論文 参考訳(メタデータ) (2024-03-08T09:02:13Z) - Contrastive Multiple Instance Learning for Weakly Supervised Person ReID [50.04900262181093]
本稿では、より効果的に教師付きされたReIDに適した新しいフレームワークであるContrastive Multiple Instance Learning (CMIL)を紹介する。
CMILは、対照的な損失を生かしながら、単一のモデルと擬似ラベルを必要とせず、自分自身を区別する。
PerformancePhoto.coの実際のアプリケーションから自然に発生する弱いラベルを特徴とするMUDDデータセットの拡張であるWL-MUDDデータセットをリリースする。
論文 参考訳(メタデータ) (2024-02-12T14:48:31Z) - Reproducibility in Multiple Instance Learning: A Case For Algorithmic
Unit Tests [59.623267208433255]
多重インスタンス学習(MIL)は、正と負のラベルと入力の「バグ」を持つ分類問題のサブドメインである。
本研究では,最も顕著な深層MILモデルの5つについて検討し,いずれも標準MILの仮定を尊重していないことを明らかにする。
提案した"アルゴリズムユニットテスト"によってこの問題を特定し,実証する。そこでは,MILを尊重するモデルによって解決可能な,合成データセットを作成する。
論文 参考訳(メタデータ) (2023-10-27T03:05:11Z) - PDL: Regularizing Multiple Instance Learning with Progressive Dropout Layers [2.069061136213899]
多重インスタンス学習(MIL)は、バッグとして知られるインスタンスのコレクションにバイナリクラスラベルを割り当てようとする、弱い教師付き学習アプローチである。
本稿では,複雑な特徴表現の発見において,MILモデルの過度な適合と強化を図るために,プログレッシブ・ドロップアウト・レイヤ(PDL)という手法を提案する。
論文 参考訳(メタデータ) (2023-08-19T21:20:30Z) - Multiple Instance Learning Framework with Masked Hard Instance Mining
for Whole Slide Image Classification [11.996318969699296]
マスケードハードインスタンスマイニング(MHIM-MIL)について紹介する。
MHIM-MILは、潜在的なハードインスタンスを探索するために一貫性のある制約を持つシームズ構造(Teacher-Student)を使用する。
CAMELYON-16およびTCGA肺がんデータセットの実験結果は、MHIM-MILがパフォーマンスとトレーニングコストの点で他の最新の方法よりも優れていることを示している。
論文 参考訳(メタデータ) (2023-07-28T01:40:04Z) - Unbiased Multiple Instance Learning for Weakly Supervised Video Anomaly
Detection [74.80595632328094]
弱監視ビデオ異常検出(WSVAD)における多重インスタンス学習(MIL)の優位性
We propose a new MIL framework: Unbiased MIL (UMIL) to learn unbiased anomaly features that improve WSVAD。
論文 参考訳(メタデータ) (2023-03-22T08:11:22Z) - DTFD-MIL: Double-Tier Feature Distillation Multiple Instance Learning
for Histopathology Whole Slide Image Classification [18.11776334311096]
マルチプル・インスタンス・ラーニング(MIL)は、スライド画像(WSI)の病理組織学的分類において、ますます使われている。
擬似バッグの概念を導入することにより,バッグの数を事実上拡大することを提案する。
我々はまた、注目に基づくMILの枠組みに基づくインスタンス確率の導出にも貢献し、この導出を利用して提案したフレームワークの構築と分析に役立てる。
論文 参考訳(メタデータ) (2022-03-22T22:33:42Z) - CIL: Contrastive Instance Learning Framework for Distantly Supervised
Relation Extraction [52.94486705393062]
我々は、典型的なマルチインスタンス学習(MIL)フレームワークを超えて、新しいコントラッシブ・インスタンス学習(CIL)フレームワークを提案する。
具体的には、初期MILをリレーショナルトリプルエンコーダと各インスタンスに対する負のペアに対する制約正のペアとみなす。
提案手法の有効性を実験的に検証し, 提案手法をNYT10, GDS, KBPで比較検討した。
論文 参考訳(メタデータ) (2021-06-21T04:51:59Z) - Dual-stream Multiple Instance Learning Network for Whole Slide Image
Classification with Self-supervised Contrastive Learning [16.84711797934138]
スライド画像全体分類(WSI)の課題に対処する。
WSI分類は、スライドレベルラベルのみが利用可能である場合、多重インスタンス学習(MIL)問題としてキャストすることができる。
局所アノテーションを必要としないWSI分類と腫瘍検出のためのMILベースの手法を提案する。
論文 参考訳(メタデータ) (2020-11-17T20:51:15Z) - Dual-stream Maximum Self-attention Multi-instance Learning [11.685285490589981]
MIL(Multi-Instance Learning)は、インスタンスレベルのラベルが利用できない間に単一のクラスラベルがインスタンスのバッグに割り当てられる弱い教師付き学習の一種である。
ニューラルネットワークによりパラメータ化されたDSMILモデル(Dual-stream maximum self-attention MIL model)を提案する。
提案手法は,最高のMIL手法と比較して優れた性能を示し,ベンチマークMILデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2020-06-09T22:44:58Z) - Weakly-Supervised Action Localization with Expectation-Maximization
Multi-Instance Learning [82.41415008107502]
弱教師付きアクションローカライゼーションでは、ビデオレベルアクションラベルのみを与えられたビデオ内のアクションセグメントをローカライズするモデルをトレーニングする必要がある。
バッグ(ビデオ)には複数のインスタンス(アクションセグメント)が含まれている。
我々のEM-MILアプローチは、学習目標とMIL仮定の両方をより正確にモデル化することを示します。
論文 参考訳(メタデータ) (2020-03-31T23:36:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。